
Chi-square test for goodness-of-fit 

The chi-square test for goodness-of-fit is an alternative to the G-test for goodness-of-fit. Most of the 
information on this page is identical to that on the G-test page. You should read the section on "Chi-square 
vs. G-test" near the bottom of this page, pick either chi-square or G-test, then stick with that choice for the 
rest of your life. 

When to use it 
Use the chi-square test for goodness-of-fit when you have one nominal variable with two or more values 

(such as red, pink and white flowers). The observed counts of numbers of observations in each category are 
compared with the expected counts, which are calculated using some kind of theoretical expectation (such as 
a 1:1 sex ratio or a 1:2:1 ratio in a genetic cross). 

If the expected number of observations in any category is too small, the chi-square test may give 
inaccurate results, and an exact test or a randomization test should be used instead. See the web page on 
small sample sizes for further discussion. 

Null hypothesis 
The statistical null hypothesis is that the number of observations in each category is equal to that 

predicted by a biological theory, and the alternative hypothesis is that the observed numbers are different 
from the expected. The null hypothesis is usually an extrinsic hypothesis, one for which the expected 
proportions are determined before doing the experiment. Examples include a 1:1 sex ratio or a 1:2:1 ratio in 
a genetic cross. Another example would be looking at an area of shore that had 59% of the area covered in 
sand, 28% mud and 13% rocks; if seagulls were standing in random places, your null hypothesis would be 
that 59% of the seagulls were standing on sand, 28% on mud and 13% on rocks. 

In some situations, an intrinsic hypothesis is used. This is a null hypothesis in which the expected 
proportions are calculated after the experiment is done, using some of the information from the data. The 
best-known example of an intrinsic hypothesis is the Hardy-Weinberg proportions of population genetics: if 
the frequency of one allele in a population is p and the other allele is q, the null hypothesis is that expected 
frequencies of the three genotypes are p2, 2pq, and q2. This is an intrinsic hypothesis, because p and q are 
estimated from the data after the experiment is done, not predicted by theory before the experiment. 

How the test works 
The test statistic is calculated by taking an observed number (O), subtracting the expected number (E), 

then squaring this difference. The larger the deviation from the null hypothesis, the larger the difference 
between observed and expected is. Squaring the differences makes them all positive. Each difference is 
divided by the expected number, and these standardized differences are summed. The test statistic is 
conventionally called a "chi-square" statistic, although this is somewhat confusing (it's just one of many test 
statistics that follows the chi-square distribution). The equation is  

chi2 = ∑(O−E)2/E 
 

As with most test statistics, the larger the difference between observed and expected, the larger the test 
statistic becomes. 

The distribution of the test statistic under the null hypothesis is approximately the same as the theoretical 
chi-square distribution. This means that once you know the chi-square test statistic, you can calculate the 
probability of getting that value of the chi-square statistic.  
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The shape of the chi-square distribution depends on the number of degrees of freedom. For an extrinsic 
null hypothesis (the much more common situation, where you know the proportions predicted by the null 
hypothesis before collecting the data), the number of degrees of freedom is simply the number of values of 
the variable, minus one. Thus if you are testing a null hypothesis of a 1:1 sex ratio, there are two possible 
values (male and female), and therefore one degree of freedom. This is because once you know how many 
of the total are females (a number which is "free" to vary from 0 to the sample size), the number of males is 
determined. If there are three values of the variable (such as red, pink, and white), there are two degrees of 
freedom, and so on.  

An intrinsic null hypothesis is one in which you estimate one or more parameters from the data in order 
to get the numbers for your null hypothesis. As described above, one example is Hardy-Weinberg 
proportions. For an intrinsic null hypothesis, the number of degrees of freedom is calculated by taking the 
number of values of the variable, subtracting 1 for each parameter estimated from the data, then subtracting 
1 more. Thus for Hardy-Weinberg proportions with two alleles and three genotypes, there are three values of 
the variable (the three genotypes); you subtract one for the parameter estimated from the data (the allele 
frequency, p); and then you subtract one more, yielding one degree of freedom.  

Examples: extrinsic hypothesis 
Mendel crossed peas that were heterozygotes for Smooth/wrinkled, where Smooth is dominant. The 

expected ratio in the offspring is 3 Smooth: 1 wrinkled. He observed 423 Smooth and 133 wrinkled.  
The expected frequency of Smooth is calculated by multiplying the sample size (556) by the expected 

proportion (0.75) to yield 417. The same is done for green to yield 139. The number of degrees of freedom 
when an extrinsic hypothesis is used is the number of values of the nominal variable minus one. In this case, 
there are two values (Smooth and wrinkled), so there is one degree of freedom.  

The result is chi-square=0.35, 1 d.f., P=0.557, indicating that the null hypothesis cannot be rejected; 
there is no significant difference between the observed and expected frequencies.  

Mannan and Meslow (1984) studied bird foraging behavior in a forest in Oregon. In a managed forest, 
54% of the canopy volume was Douglas fir, 40% was ponderosa pine, 5% was grand fir, and 1% was 
western larch. They made 156 observations of foraging by red-breasted nuthatches; 70 observations (45% of 
the total) in Douglas fir, 79 (51%) in ponderosa pine, 3 (2%) in grand fir, and 4 (3%) in western larch. The 
biological null hypothesis is that the birds forage randomly, without regard to what species of tree they're in; 
the statistical null hypothesis is that the proportions of foraging events are equal to the proportions of canopy 
volume. The difference in proportions is significant (chi-square=13.593, 3 d.f., P=0.0035). 

The expected numbers in this example are pretty small, so it would be better to analyze it with an exact test or a 
randomization test. I'm leaving it here because it's a good example of an extrinsic hypothesis that comes from 
measuring something (canopy volume, in this case), not a mathematical theory. 

Example: intrinsic hypothesis 
McDonald et al. (1996) examined variation at the CVJ5 locus in the American oyster, Crassostrea 

virginica. There were two alleles, L and S, and the genotype frequencies in Panacea, Florida were 14 LL, 21 
LS, and 25 SS. The estimate of the L allele proportion from the data is 49/120=0.408. Using the Hardy-
Weinberg formula and this estimated allele proportion, the expected genotype proportions are 0.167 LL, 
0.483 LS, and 0.350 SS. There are three classes (LL, LS and SS) and one parameter estimated from the data 
(the L allele proportion), so there is one degree of freedom. The result is chi-square=4.54, 1 d.f., P=0.033, 
which is significant at the 0.05 level. We can reject the null hypothesis that the data fit the expected Hardy-
Weinberg proportions. 

Graphing the results 
If there are just two values of the nominal variable, you wouldn't display the result in a graph, as that 
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would be a bar graph with just one bar. Instead, you just report the proportion; for example, Mendel 
found 23.9% wrinkled peas in his cross.  

With more than two values of the nominal variable, you'd usually present the results of a goodness-of-fit 
test in a table of observed and expected proportions. If the expected values are obvious (such as 50%) or 
easily calculated from the data (such as Hardy–Weinberg proportions), you can omit the expected numbers 
from your table. For a presentation you'll probably want a graph showing both the observed and expected 
proportions, to give a visual impression of how far apart they are. You should use a bar graph for the 
observed proportions; the expected can be shown with a horizontal dashed line, or with bars of a different 
pattern. 
  

 

One way to get the horizontal lines on the graph is to set up the graph with the observed proportions and 
error bars, set the scale for the Y-axis to be fixed for the minimum and maximum you want, and get 
everything formatted (fonts, patterns, etc.). Then replace the observed proportions with the expected 
proportions in the spreadsheet; this should make the columns change to represent the expected values. Using 
the spreadsheet drawing tools, draw horizontal lines at the top of the columns. Then put the observed 
proportions back into the spreadsheet. Of course, if the expected proportion is something simple like 25%, 
you can just draw the horizontal line all the way across the graph. 

Similar tests 
The chi-square test of independence is used for two nominal variables, not one. 
There are several tests that use chi-square statistics. The one described here is formally known as 

Pearson's chi-square. It is by far the most common chi-square test, so it is usually just called the chi-square 
test. 

You have a choice of four goodness-of-fit tests: the exact binomial test or exact multinomial test, the G-
test of goodness-of-fit,, the chi-square test of goodness-of-fit, or the randomization test. For small values of 
the expected numbers, the chi-square and G-tests are inaccurate, because the distribution of the test statistics 
do not fit the chi-square distribution very well. 

The usual rule of thumb is that you should use the exact test or randomization test when the smallest 
expected value is less than 5, and the chi-square and G-tests are accurate enough for larger expected values. 
This rule of thumb dates from the olden days when statistics were done by hand, and the calculations for the 
exact test were very tedious and to be avoided if at all possible. Nowadays, computers make it just as easy to 
do the exact test or randomization test as the computationally simpler chi-square or G-test. I recommend that 
you use the exact test when the total sample size is less than 1000. With sample sizes between 50 and 1000, 
it generally doesn't make much difference which test you use, so you shouldn't criticize someone for using 

Genotype proportions at the CVJ5 
locus in the American oyster. 

Horizontal dashed lines indicate the 
expected proportions under Hardy–
Weinberg equilibrium; error bars 

indicate 95% confidence intervals.

Genotype proportions at the CVJ5 
locus in the American oyster. Gray 
bars are observed proportions, with 

95% confidence intervals; white bars 
are expected proportions under 
Hardy–Weinberg equilibrium.
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the chi-square or G-test (as I have in the examples above). See the web page on small sample sizes for 
further discussion. 

Chi-square vs. G-test 
The chi-square test gives approximately the same results as the G-test. Unlike the chi-square test, G-

values are additive, which means they can be used for more elaborate statistical designs, such as repeated G-
tests of goodness-of-fit. G-tests are a subclass of likelihood ratio tests, a general category of tests that have 
many uses for testing the fit of data to mathematical models; the more elaborate versions of likelihood ratio 
tests don't have equivalent tests using the Pearson chi-square statistic. The G-test is therefore preferred by 
many, even for simpler designs. On the other hand, the chi-square test is more familiar to more people, and 
it's always a good idea to use statistics that your readers are familiar with when possible. You may want to 
look at the literature in your field and see which is more commonly used. 

How to do the test 

Spreadsheet 
I have set up a spreadsheet for the chi-square test of goodness-of-fit. It is largely self-explanatory. It will 

calculate the degrees of freedom for you if you're using an extrinsic null hypothesis; if you are using an 
intrinsic hypothesis, you must enter the degrees of freedom into the spreadsheet.  

Web pages 
There are also web pages that will perform this test here, here, or here. None of these web pages lets you 

set the degrees of freedom to the appropriate value for testing an intrinsic null hypothesis. 

SAS 
Here is a SAS program that uses PROC FREQ for a chi-square test. It uses the Mendel pea data from 

above, and it assumes you've already counted the number of smooth and wrinkled peas. The weight 
count command tells SAS that the 'count' variable is the number of times each value of 'texture' was 
observed. The zeros option tells it to include observations with counts of zero, for example if you had 20 
smooth peas and 0 wrinkled peas; it doesn't hurt to always include the zeros option. chisq tells SAS to 
do a chi-square test, and testp=(75 25); tells it the expected percentages. The expected percentages 
must add up to 100. The expected percentages are given for the values of 'texture' in alphabetical order: 75 
percent 'smooth', 25 percent 'wrinkled'. 

data peas; 
   input texture $ count / zeros; 
   cards; 
smooth 423 
wrinkled 133 
; 
proc freq data=peas; 
   weight count;  
   tables texture / chisq testp=(75 25); 
run; 
 

Here's a SAS program that uses PROC FREQ for a chi-square test on raw data. I've used three dots to 
indicate that I haven't shown the complete data set. 

data peas; 
   input texture $; 
   cards; 
smooth  
wrinkled  
smooth 
smooth 
wrinkled 
smooth 
   . 
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   . 
   . 
smooth 
smooth 
; 
proc freq data=peas; 
   tables texture / chisq testp=(75 25); 
run; 
 

The output includes the following: 
     Chi-Square Test 
for Specified Proportions 
------------------------- 
Chi-Square         0.3453 
DF                      1 
Pr > ChiSq         0.5568 
 

You would report this as "chi-square=0.3453, 1 d.f., P=0.5568." 

Power analysis 
If your nominal variable has just two values, you can use the power calculator on the exact binomial 

page. 
If your nominal variable has more than two values, use the free G*Power program. Choose "Goodness-

of-fit tests: Contingency tables" from the Statistical Test menu, then choose "Chi-squared tests" from the 
Test Family menu. To calculate effect size, click on the Determine button and enter the null hypothesis 
proportions in the first column and the proportions you hope to see in the second column. Then click on the 
Calculate and Transfer to Main Window button. Set your alpha and power, and be sure to set the degrees of 
freedom (Df); for an extrinsic null hypothesis, that will be the number of rows minus one. 

As an example, let's say you want to do a genetic cross of snapdragons with an expected 1:2:1 ratio, and 
you want to be able to detect a pattern with 5 percent more heterozygotes that expected. Enter 0.25, 0.50, 
and 0.25 in the first column, enter 0.225, 0.55, and 0.225 in the second column, click on Calculate and 
Transfer to Main Window, enter 0.05 for alpha, 0.80 for power, and 2 for degrees of freedom. The result is a 
total sample size of 964. 

Further reading 
Sokal and Rohlf, p. 701. 

Zar, pp. 462-466. 
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