

Quantum Computing for Everyone

Quantum Computing for Everyone

Chris Bernhardt

The MIT Press
Cambridge, Massachusetts
London, England

© 2019 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (including photocopying, recording, or information

storage and retrieval) without permission in writing from the publisher.

This book was set in ITC Stone Sans Std and ITC Stone Serif Std by Toppan Best-set

Premedia Limited. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Bernhardt, Chris, author.

Title: Quantum computing for everyone / Chris Bernhardt.

Description: Cambridge, MA : The MIT Press, [2019] | Includes bibliographical

references and index.

Identifiers: LCCN 2018018398 | ISBN 9780262039253 (hardcover : alk. paper)

Subjects: LCSH: Quantum computing--Popular works.

Classification: LCC QA76.889 .B47 2019 | DDC 006.3/843--dc23 LC record available

at https://lccn.loc.gov/2018018398

10  9  8  7  6  5  4  3  2  1

https://lccn.loc.gov/2018018398

To Henryka

Contents

Acknowledgments  xi

Introduction  xiii

1	 Spin  1

The Quantum Clock  6

Measurements in the Same Direction  7

Measurements in Different Directions  7

Measurements  9

Randomness  10

Photons and Polarization  11

Conclusions  15

2	 Linear Algebra  17

Complex Numbers versus Real Numbers  17

Vectors  19

Diagrams of Vectors  19

Lengths of Vectors  20

Scalar Multiplication  21

Vector Addition  21

Orthogonal Vectors  23

Multiplying a Bra by a Ket  23

Bra-Kets and Lengths  24

Bra-Kets and Orthogonality  24

Orthonormal Bases  25

Vectors as Linear Combinations of Basis Vectors  27

Ordered Bases  29

Length of Vectors  30

Matrices  30

viii  Contents

Matrix Computations  33

Orthogonal and Unitary Matrices  34

Linear Algebra Toolbox  35

3	 Spin and Qubits  37

Probability  37

Mathematics of Quantum Spin  38

Equivalent State Vectors  41

The Basis Associated with a Given Spin Direction  43

Rotating the Apparatus through 60°  45

The Mathematical Model for Photon Polarization  46

The Basis Associated with a Given Polarization Direction  47

The Polarized Filters Experiments  47

Qubits  49

Alice, Bob, and Eve  50

Probability Amplitudes and Interference  52

Alice, Bob, Eve, and the BB84 Protocol  53

4	 Entanglement  57

Alice and Bob’s Qubits Are Not Entangled  57

Unentangled Qubits Calculation  59

Entangled Qubits Calculation  61

Superluminal Communication  62

The Standard Basis for Tensor Products  64

How Do You Entangle Qubits?  65

Using the CNOT Gate to Entangle Qubits  67

Entangled Quantum Clocks  68

5	 Bell’s Inequality  71

Entangled Qubits in Different Bases  72

Proof That
1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 




 Equals

1
2

1
2

0 0 1 1b b b b⊗ + ⊗   73

Einstein and Local Realism  75

Einstein and Hidden Variables  77

A Classical Explanation of Entanglement  78

Bell’s Inequality  79

The Answer of Quantum Mechanics  80

Contents  ix

The Classical Answer  81

Measurement  84

The Ekert Protocol for Quantum Key Distribution  86

6	 Classical Logic, Gates, and Circuits  89

Logic  90

Boolean Algebra  91

Functional Completeness  94

Gates  98

Circuits  99

NAND Is a Universal Gate  100

Gates and Computation  101

Memory  103

Reversible Computation  103

Billiard Ball Computing  111

7	 Quantum Gates and Circuits  117

Qubits  118

The CNOT Gate  118

Quantum Gates  120

Quantum Gates Acting on One Qubit  121

Are There Universal Quantum Gates?  123

No Cloning Theorem  124

Quantum Computation versus Classical Computation  126

The Bell Circuit  127

Superdense Coding  129

Quantum Teleportation  132

Error Correction  135

8	 Quantum Algorithms  141

The Complexity Classes P and NP  142

Are Quantum Algorithms Faster Than Classical Ones?  144

Query Complexity  145

Deutsch’s Algorithm  145

The Kronecker Product of Hadamard Matrices  149

The Deutsch-Jozsa Algorithm  152

Simon’s Algorithm  157

Complexity Classes  166

Quantum Algorithms  168

x  Contents

9	 Impact of Quantum Computing  171

Shor’s Algorithm and Cryptanalysis  172

Grover’s Algorithm and Searching Data  176

Chemistry and Simulation  181

Hardware  182

Quantum Supremacy and Parallel Universes  186

Computation  187

Index  191

Acknowledgments
© Massachusetts Institute of TechnologyAll Rights Reserved

I am very grateful to a number of people for their help with this book. Matt

Coleman, Steve LeMay, Dan Ryan, Chris Staecker, and three anonymous

reviewers read through various drafts with great care. Their suggestions and

corrections have improved this book beyond measure. I also thank Marie

Lee and her team at MIT Press for all of their support and work in turning a

rough proposal into this book.

Introduction
I n t r o d u c t i o n
I n t r o d u c t i o n

© Massachusetts Institute of TechnologyAll Rights Reserved

The aim of this book is to give an introduction to quantum computing that

anyone who is comfortable with high school mathematics and is willing

to put in a little work can understand. We will study qubits, entanglement,

quantum teleportation, and quantum algorithms, among other quantum-

related topics. The goal is not to give some vague idea of these concepts but

to make them crystal clear.

Quantum computing is often in the news: China teleported a qubit

from earth to a satellite; Shor’s algorithm has put our current encryption

methods at risk; quantum key distribution will make encryption safe again;

Grover’s algorithm will speed up data searches. But what does all this really

mean? How does it all work? All of this will be explained.

Can this be done without using mathematics? No, not if we want to

really understand what is going on. The underlying ideas come from quan-

tum mechanics and are often counterintuitive. Attempts to describe these

in words don’t work because we have no experience of them in our every-

day lives. Even worse, verbal descriptions often give the impression that we

have understood something when we really haven’t. The good news is that

we really do not need to introduce much mathematics. My role as a math-

ematician is to simplify the mathematics as much as possible—just sticking

to the absolute essentials—and to give elementary examples to illustrate

both how it is used and what it means. That said, the book probably con-

tains mathematical ideas that you have not seen before, and, as with all

mathematics, new concepts can seem strange at first. It is important not to

gloss over the examples but to read them carefully, following each step of

the calculations.

Quantum computing is a beautiful fusion of quantum physics with com-

puter science. It incorporates some of the most stunning ideas of physics

xiv  Introduction

from the twentieth century into an entirely new way of thinking about

computation. The basic unit of quantum computing is the qubit. We will

see what qubits are and what happens when we measure them. A classical

bit is either 0 or 1. If it’s 0 and we measure it, we get 0. If it’s 1 and we mea-

sure 1, we get 1. In both cases the bit remains unchanged. The situation is

totally different for qubits. A qubit can be in one of an infinite number of

states—a superposition of both 0 and 1—but when we measure it, as in the

classical case, we just get one of two values, either 0 or 1. The act of mea-

surement changes the qubit. A simple mathematical model describes all of

this precisely.

Qubits can also be entangled. When we make a measurement of one of

them, it affects the state of the other. Again, this is something that we don’t

experience in our daily lives, but it is described perfectly by our mathemati-

cal model.

These three things—superposition, measurement, and entanglement—

are the key quantum mechanical ideas. Once we know what they mean,

we can see how they may be used in computations. It is here that human

ingenuity enters the picture.

Mathematicians often describe proofs as being beautiful, often contain-

ing unexpected insights. I feel exactly the same way about many of the

topics we will look at. Bell’s theorem, quantum teleportation, superdense

coding, all are gems. The error correcting circuit and Grover’s algorithm are

absolutely amazing.

By the end of the book, you should understand the basic ideas that

underlie quantum computing, and you will have seen some ingenious

and beautiful constructions. You will also come to realize that quantum

computing and classical computing are not two distinct disciplines, but

that quantum computing is the more fundamental form of computing—

anything that can be computed classically can be computed on a quantum

computer. The qubit is the basic unit of computation, not the bit. Compu-

tation, in its essence, really means quantum computation.

Finally, it should be emphasized that this book is about the theory of

quantum computation. It is about software, not hardware. We briefly men-

tion hardware in places and occasionally talk about how to physically

entangle qubits, but these topics are just asides. The book is not about how

to build a quantum computer, but how to use one.

Here’s a brief description of the book’s contents.

Introduction  xv

Chapter 1. The basic unit of classical computing is the bit. Bits can be repre-

sented by anything that can be in one of two possible states. The standard

example is an electrical switch that can be either on or off. The basic unit

of quantum computing is the qubit. This can be represented by the spin of

an electron or the polarization of a photon, but the properties of spin and

polarization are not nearly as familiar to us as a switch being in the on or

off position.

We look at the basic properties of spin, starting with Otto Stern and

Walther Gerlach’s classic experiment in which they studied the magnetic

properties of silver atoms. We see what happens when we measure spin in a

number of different directions. The act of making a measurement can affect

the state of a qubit. There is also an underlying randomness associated with

some of the measurements that we will need to explain.

The chapter concludes by showing that experiments analogous to those

for spin can be performed using polarized filters and ordinary light.

Chapter 2. Quantum computing is based on an area of mathematics called

linear algebra. Fortunately, we only need a few concepts. This chapter

introduces and describes the linear algebra we need and illustrates how it is

going to be used in the later chapters.

We introduce vectors and matrices and show how to calculate the length

of vectors and how to tell whether or not two vectors are perpendicular.

The chapter starts by just considering elementary operations on vectors

and then shows how matrices give a simple way of doing a number of these

calculations simultaneously.

It is not initially apparent that this material is going to be useful, but it

is. Linear algebra forms the foundation of quantum computing. Since the

rest of the book uses the mathematics introduced here, this chapter needs

to be read carefully.

Chapter 3. This chapter shows how the previous two chapters are con-

nected. The mathematical model of spin or, equivalently, that of polariza-

tion is given using linear algebra. This enables us to give the definition of a

qubit and to describe exactly what happens when we measure it.

Several examples of measuring qubits in different directions are given.

The chapter ends with an introduction to quantum cryptography, describ-

ing the BB84 protocol.

xvi  Introduction

Chapter 4. This chapter describes what it means for two qubits to be entan-

gled. Entanglement is difficult to describe in words, but it is easy to describe

mathematically. The new mathematical idea is the tensor product. This is

the simplest way of combining mathematical models of individual qubits

to give one model that describes a collection of qubits.

Though the mathematics is straightforward, entanglement is not some-

thing that we experience in everyday life. When one of a pair of entangled

qubits is measured, it affects the second qubit. This is what Albert Einstein,

who disliked it, called “spooky action at a distance.” We look at several

examples.

The chapter concludes by showing that we can’t use entanglement to

communicate faster than the speed of light.

Chapter 5. We look at Einstein’s concerns with entanglement and whether

a hidden variable theory can preserve local realism. We go through the

mathematics of Bell’s inequality—a remarkable result that gives an experi-

mental way of determining whether or not Einstein’s argument is correct.

As most people know, Einstein’s view was wrong, but even Bell thought he

would be proved correct.

Artur Ekert realized that the setup for the test of Bell’s inequality could

also be used both to generate a secure key to be used for cryptography and

at the same time to test whether any eavesdroppers are present. We con-

clude the chapter with a description of this cryptographic protocol.

Chapter 6. The chapter starts with standard topics in computation: bits,

gates, and logic. Then we briefly look at reversible computation and the

ideas of Ed Fredkin. We show that both the Fredkin gate and the Toffoli

gate are universal—you can build a complete computer using only Fredkin

gates (or Toffoli gates). The chapter concludes with Fredkin’s billiard-ball

computer. This is not really needed for the rest of our story, but its sheer

ingenuity demands that it be included.

This computer consists of balls colliding with one another and off vari-

ous walls. It conjures up images of particles interacting. This is one of the

ideas that inspired Richard Feynman to become interested in the idea of

quantum computing. Feynman wrote some of the earliest papers on the

subject.

Introduction  xvii

Chapter 7. This chapter begins the study of quantum computing using

quantum circuits. Quantum gates are defined. We see how a quantum gate

acts on a qubit and realize that we have been considering these ideas all

along. We just need to change our perspective. We no longer think of an

orthogonal matrix as acting on our measuring device, but as acting on the

qubit. We also prove some amazing results concerning superdense coding,

quantum teleportation, cloning, and error correction.

Chapter 8. This is probably the most challenging chapter. In it we look at

some quantum algorithms and show how quickly they can compute an

answer compared to classical algorithms. To talk about the speed of algo-

rithms we need to introduce various ideas from complexity theory. Once

we have defined something called query complexity, we study three quan-

tum algorithms and show that they are faster with respect to this type of

complexity than their classical counterparts.

Quantum algorithms exploit the underlying structure of the prob-

lem that is being solved. It is much more than just the idea of quantum

parallelism—putting the input into a superposition of all possible states.

This chapter introduces the last piece of mathematical machinery, the

Kronecker product of matrices. But the difficulty of the material is really

caused by the fact that we are computing in a completely new way and we

have no experience of thinking about solving problems using these novel

ideas.

Chapter 9. The last chapter looks at the impact that quantum computing

is going to have on our lives. We start by giving brief descriptions of two

important algorithms, one invented Peter Shor, the other by Lov Grover.

Shor’s algorithm gives a way of factoring a large number into the product

of its prime factors. This might not seem that important, but our Internet

security depends on this problem being hard to solve. Being able to factor

products of large primes threatens our current methods of securing transac-

tions between computers. It might be some time until we have quantum

computers powerful enough to factor the large numbers that are currently

in use, but the threat is real, and it is already forcing us to think about how

to redesign the ways that computers can securely talk to one another.

Grover’s algorithm is for special types of data searches. We show how it

works for a small case and indicate how it works in general. Both Grover’s

and Shor’s algorithms are important, not only for the problems they can

xviii  Introduction

solve but also for the new ideas they introduce. These underlying ideas

have been and are being incorporated into a new generation of algorithms.

After looking at algorithms, we switch gears and briefly look at how

quantum computation can be used to simulate quantum processes. Chemis-

try, at its most basic level, is quantum mechanical. Classical computational

chemistry works by taking quantum mechanical equations and simulating

them using classical computers. These simulations are approximations and

ignore the fine details. This works well in many cases, but in some cases it

doesn’t. In these cases you need the fine details, and quantum computers

should be able to give them.

This chapter also briefly looks at building actual machines. This is a very

fast-growing area. The first machines are being offered for sale. There is

even one machine available on the cloud that everyone can use for free.

It looks likely that we will soon enter the age of quantum supremacy. (We

explain what this means.)

The book concludes with the realization that quantum computation is

not a new type of computation but is the discovery of the true nature of

computation.

1  Spin
Chapter 1
S p i n

© Massachusetts Institute of TechnologyAll Rights Reserved

All computations involve inputting data, manipulating it according to cer-

tain rules, and then outputting the final answer. For classical computations,

the bit is the basic unit of data. For quantum computations, this unit is the

quantum bit—usually shortened to qubit.

A classical bit corresponds to one of two alternatives. Anything that

can be in exactly one of two states can represent a bit. Later we will see

various examples, which include the truth or falsity of a logical statement,

a switch being in the on or off position, and even the presence or absence

of a billiard ball.

A qubit, like a bit, includes these two alternatives, but—quite unlike a

bit—it can also be in a combination of these two states. What does this

mean? What exactly is a combination of two states, and what are physical

objects that can represent qubits? What is the quantum computation ana-

log to the switch?

A qubit can be represented by the spin of an electron or the polarization

of a photon. This, though true, does not seem particularly helpful as spins

of electrons and polarizations of photons are not things that most of us

have knowledge about, let alone experience with. Let’s start with a basic

introduction to describe spin and polarization. To do this we describe the

foundational experiment performed by Otto Stern and Walther Gerlach on

the spin of silver atoms.

In 1922, Niels Bohr’s planetary model described the current understand-

ing of atoms. In this model an atom consisted of a positive nucleus orbited

by negative electrons. These orbits were circular and were constrained to

certain radii. The innermost orbit could contain at most two electrons.

Once this was filled, electrons would start filling the next level, where at

most eight electrons could be held. Silver atoms have 47 electrons. Two of

2  Chapter 1

these are in the innermost orbit, then eight in the next orbit, then eighteen

more electrons in both the third and fourth levels. This leaves one lone

electron in the outermost orbit.

Now, electrons moving in circular orbits generate magnetic fields. The

electrons in the inner orbits are paired, each of the pair rotating in the

opposite direction to its partner, resulting in their magnetic fields cancel-

ing. However, the single electron in the outer orbit generates a magnetic

field that is not canceled by other electrons. This means that the atom as

a whole can be considered as a little magnet with both a south pole and a

north pole.

Stern and Gerlach designed an experiment to test whether the north–

south axes of these magnets could have any direction whatsoever or

whether they were constrained to certain directions. They did this by send-

ing a beam of silver atoms through a pair of magnets as is depicted in figure

1.1. The vee-shaped design of the magnets makes the south magnet act

more strongly than the north. If the silver atom is a magnet with north on

top and south on bottom, it will be attracted to both the magnets of the

apparatus, but the south magnet wins and the particle is deflected upward.

Similarly if the silver atom is a magnet with south on top and north on bot-

tom, it will be repelled by both the magnets of the apparatus, but again the

South

North

N
S

N
S

N S

Source

Figure 1.1
Stern-Gerlach apparatus.

Spin  3

south magnet wins and the particle is deflected downward. After passing

through the apparatus, the atoms are collected on a screen.

From the classical viewpoint, the magnetic poles of the atom could be

aligned in any direction. If they were aligned horizontally, there would be

no deflection, and in general, the size of the deflection would correspond

to the amount the magnetic axis of the atom differs from the horizontal,

with maximum deflections occurring when the magnetic poles of the atom

are aligned vertically.

If the classical viewpoint is correct, when we send a large number of

silver atoms through the machine we ought to see a continuous line on the

screen going from the top point to the bottom. But this is not what Stern

and Gerlach found. When they looked at the screen, they found just two

dots: one at the extreme top and the other at the extreme bottom. All of the

atoms behaved like little bar magnets that were aligned vertically. None of

them had any other orientation. How could this be?

But before we start analyzing what is going on in more detail, we will

shift our attention from atoms to electrons. Not only do atoms act like

little magnets, but so also do their components. When we discuss quantum

computers we will often talk about electrons and their spins. As with silver

atoms, if you measure spin* in the vertical direction, you find that the elec-

tron is either deflected in the north direction or the south direction. Again,

like silver atoms, you find that electrons are little magnets with their north

and south poles perfectly aligned in the vertical direction. None of them

have any other orientation.

In practice, you can’t actually measure electron spin of a free electron

using the Stern-Gerlach apparatus in the way we have shown because elec-

trons have a negative charge and magnetic fields deflect moving charged

particles. That said, the following diagrams give useful pictorial representa-

tions of the results of measuring spin in various directions. The idea behind

this diagram is that you are the source; the magnets are lined up between

you and this book. The dot shows how the electron gets deflected. In figure

1.2, the picture on the left shows the deflection by the magnets. The one on

the right gives a depiction of the electron as a magnet with the north and

south poles marked. We will describe this situation as saying the electron

*  We will keep using the term spin because it is the standard terminology. But we are

just determining the axis of the poles of a magnet.

4  Chapter 1

has spin N in the vertical direction. Figure 1.3 shows the other possibility,

where the electron has spin S in the vertical direction.

To understand the deflection, it helps to remember that the south mag-

net acts more strongly than the north, and so to calculate the direction

of deflection you just consider the effect of this magnet. If the electron

is aligned with its north pole closest to the south magnet, then it will be

attracted and the deflection will be in the direction of the south magnet. If

the electron is aligned with its south pole closest to the south magnet, then

it will be repelled, and the deflection will be in the direction of the north

magnet.

Of course, there is nothing special about the vertical direction. For

example, we can rotate the magnets through 90°. The electrons will still

be deflected in the direction given by either the north magnet or the south

magnet. In this case, the electrons now behave as magnets with their

north and south poles aligned in the horizontal direction, as is depicted in

figures 1.4 and 1.5.

S

N

(a) Outcome of experiment

N
S

(b) Diagram of electron

Figure 1.2
Electron with spin N in the vertical direction.

(a) Outcome of experiment (b) Diagram of electron

S

N

S
N

Figure 1.3
Electron with spin S in the vertical direction.

Spin  5

In the following chapters we will want to rotate the magnets through

various angles. We will measure angles in the clockwise direction with 0°

denoting the upward vertical direction and θ measuring the angle from the

upward vertical. Figure 1.6 depicts an electron with spin N in the direction

of a general angle θ°.

Sometimes spin is described as being up, down, left, or right. Our descrip-

tion of an electron being N in the direction 0° seems somewhat cumber-

some, but it is unambiguous and avoids some of the pitfalls of using up,

down, and so on, especially when we rotate the apparatus through 180°. For

example, both of the situations pictured in figure 1.7 represent an electron

having spin N in direction 0° or equivalently spin S in direction 180°.

(a) Outcome of experiment (b) Diagram of electron

SN NS

Figure 1.4
Electron with spin N in the 90° direction.

(a) Outcome of experiment (b) Diagram of electron

SN SN

Figure 1.5
Electron with spin S in the 90° direction.

N

S

Figure 1.6
Electron with spin N in the θ° direction.

6  Chapter 1

Before we proceed with our study of electron spin, we will pause and

look at an analogy that we will use in several places.

The Quantum Clock

Imagine that you have a clock with a dial marked with hours in the stan-

dard positions. It also has a hand. You are, however, forbidden to look at

the face of the clock. You can only ask it questions. You want to know in

which direction the hand is pointing, so you would like to ask the clock

this seemingly simple question. But it is not allowed. You are only allowed

to ask whether the hand is pointing at a particular number on the face. So,

for example, you can ask if the hand is pointing to twelve, or you can ask

if it is pointing to four. Now, if this were a regular clock you would have to

be extremely lucky to get a yes answer. Most of the time the hand would

be pointing in a completely different direction. But the quantum clock is

not like a regular clock. It either answers yes or it tells you that the hand is

pointing in the direction exactly opposite the one you asked about. If we

ask if the hand is pointing in the direction of twelve, it will tell us either

that it is or that it is pointing in the direction of six. If we ask if the hand is

pointing in the direction of four, it will either tell us it is, or that it is point-

ing in the direction of ten. This is a very curious state of affairs, but it is

exactly analogous to electron spin.

As we said, electron spin is going to be the idea that motivates the defi-

nition of the qubit. If we are going to do computations, we need to under-

stand the rules that govern spin measurements. We start by considering

what happens when we measure more than once.

(a) Outcome of experiment (b) Outcome of experiment (c) Diagram of electron

S

N

S

N

N
S

Figure 1.7
Electron with spin N in the 0° direction.

Spin  7

Measurements in the Same Direction

Measurements are repeatable. If we repeat exactly the same measurement,

we get exactly the same result. For example, suppose that we decide to

measure an electron’s spin in the vertical direction. We then repeat exactly

the same experiment by positioning two more sets of our apparatus behind

the first one. One is positioned in exactly the right place to catch elec-

trons that are deflected upward by the first apparatus. The other is placed

to catch the electrons deflected downward. The electrons that are deflected

upward by the first apparatus are deflected up by the second, and the ones

deflected down by the first apparatus are deflected down by the second.

This means that electrons measured to have spin N in direction 0° initially

also have spin N in direction 0° when we repeat the experiment. Similarly, if

an electron is initially measured to have spin S in direction 0° and we repeat

exactly the same experiment, it will still have spin S in direction 0°. For our

clock analogy, if we repeatedly ask if the hand is pointing at twelve, we will

repeatedly get the same answer: that either it is always pointing toward

twelve or it is always pointing toward six.

There is, of course, nothing special about the vertical direction. If we

start by measuring in direction θ°, and then repeatedly measure in the same

direction, we will obtain the exactly the same result each time. We will end

up with a string of letters consisting entirely of Ns or one entirely of Ss.

The next thing to consider is what happens if we don’t repeat the same

measurement. For example, what happens if we first measure vertically and

then horizontally?

Measurements in Different Directions

We will measure the electron’s spin first in the vertical direction, then in

the horizontal direction. We will send a stream of electrons through the

first detector—measuring spin in the vertical direction. As before, we have

two more detectors behind the first one in the appropriate positions to

catch the electrons coming from the first detector. The difference is that

these two detectors are rotated through 90° and measure spin in the hori-

zontal direction.

First we look at the stream of electrons that are deflected upward by the

first detector—these have spin N in direction 0°. When they go through the

8  Chapter 1

second detector, we find that half of them have spin N and half have spin S

in direction 90°. The sequence of north and south spins in direction 90° is

completely random. There is no way of telling whether an electron that had

spin N in direction 0° will have either spin S or N when we measure it again

in direction 90°. Similar results hold for the electrons that the first detector

shows have spin S in the vertical direction—exactly half have spin N in the

horizontal direction, and the other half have spin S in the horizontal direc-

tion. Again, the sequence of Ns and Ss is completely random.

The analogous questions for our clock are asking about whether the

hand is pointing in the direction of twelve and then asking if it is pointing

in the direction of three. If we have a large number of clocks and ask them

these two questions, the answers to the second questions will be random.

Half of the clocks will say the hand is pointing in the direction of three. The

other half will say in the direction of nine. The answers to the first question

have no bearing on the answers to the second question.

Finally, we will look at what happens when we make three measure-

ments. First we measure vertically, then horizontally, and then vertically

once more. Consider a stream of electrons coming from the first detector

that have spin N in direction 0°. We know that half of them will have

spin N and half have spin S when we measure spin in direction 90°. We

will restrict attention to the stream that corresponds to N for the first two

measurements and then, for the third measurement, measure spin in the

vertical direction. We find that exactly half of these electrons have spin N

in direction 0° and half have spin S. Once more the sequence of Ns and Ss

is completely random. The fact that the electrons initially had spin N in the

vertical direction has no bearing on whether or not they have will still have

spin N when we again measure in the vertical direction.

What conclusions can we draw from these results? There are three. And

they are all important.

First, if we keep repeating exactly the same question we get exactly the

same answer. This tells us that sometimes there are definite answers. We are

not getting random answers to every question.

Second, randomness does seem to occur. If we ask a sequence of ques-

tions, the final results can be random.

Third, measurements affect outcomes. We saw that if we ask the same

question three times, we get the exactly the same answer three times. But

if the first and third questions are identical and the second is different, the

Spin  9

answers to the first and third questions need not be the same. For example,

if we ask three times in a row if the hand is pointing toward twelve, we

will get exactly the same answer each time, but if we ask first if it is point-

ing toward twelve, then whether it is pointing to three, and finally again

whether it is pointing toward twelve, the answers to the first and third ques-

tion need not be the same. The only difference between the two scenarios

is the second question, so that question must be affecting the outcome of

the following question. We will say a little more about these observations,

starting with measurements.

Measurements

In classical mechanics, we might consider the path of a ball thrown into the

air. The path can be calculated using calculus, but in order to perform the

calculation we need to know certain quantities such as the mass of the ball

and its initial velocity. How we measure these is not part of the theory. We

just assume that they are known. The implicit assumption is that the act

of measuring is not important to the problem—that taking a measurement

does not affect the system being modeled. For the example of a ball being

thrown into the air, this makes sense. We can measure its initial velocity

using a radar gun, for example. This involves bouncing photons off the

ball and, though bouncing photons will have an effect on the ball, it is

negligible. This is the philosophy underlying classical mechanics: Measure-

ments will affect the objects being studied, but experiments can be designed

so the effect of measurement is negligible and so can consequently be

ignored.

In quantum mechanics, we are often considering tiny particles like

atoms or electrons. Here bouncing photons off them has an effect that is no

longer negligible. In order to perform some measurement, we have to inter-

act with the system. These interactions are going to perturb our system, so

we can no longer ignore them. It should not seem surprising that measure-

ment becomes a basic component of the theory, but what is surprising is

how this is done. For example, consider the case where we measure the spin

of an electron first in the vertical direction and then in the horizontal one.

We have seen that exactly half of the electrons that have spin N in direction

0° after passing through the first detector will have spin N in direction 90°

when measured by the second detector. It might seem that the strength of

10  Chapter 1

the magnets might be having some effect on the outcome, perhaps they

are so strong that they are causing the magnetic axes of the electrons to

twist to align with the magnetic field of the measuring device, and that if

we had weaker magnets the twisting would be lessened and we might get

a different result. However, this is not how measurement is incorporated

into the theory. As we shall see, our model does not take into account the

“strength” of the measurement. Rather, it is the actual process of taking the

measurement, however it is done, that has an effect on the system. Later we

will describe the mathematics that models how measuring spin is treated

in quantum mechanics. Each time a measurement is made, we will see that

the system is changed in certain prescribed ways; these prescribed ways

depend on the type of measurement being made but not on the strength

of the measurement.

Incorporating measurements into the theory is one on the differences

between classical and quantum mechanics. Another difference concerns

randomness.

Randomness

Quantum mechanics involves randomness. For example, if we first measure

the spin of a stream of electrons in the vertical direction, then in the hori-

zontal direction, and record the results from the second measuring device,

we will obtain a string of Ns and Ss. This sequence of spins is completely

random. For example, it might look something like NSSNNNSS. …

The classical experiment for generating a random sequence of two sym-

bols each associated with probability of a half is that of tossing a fair coin. If

we toss a fair coin we might get a sequence HTTHHHTT. … Although these

two examples yield similar results, there is a big difference in how random-

ness is interpreted in the two theories.

Tossing a coin is something that is described by classical mechanics. It

can be modeled using calculus. To compute whether the coins lands heads

or tails up, you need first to carefully measure the initial conditions: the

weight of the coin, the height above the ground, the force of the impact

of the thumb on the coin, the exact location on the coin where the thumb

hits, the position of the coin, and so forth and so on. Given all of these

values exactly, the theory will tell us which way up the coin lands. There

is no actual randomness involved. Tossing a coin seems random because

Spin  11

each time we do it the initial conditions vary slightly. These slight varia-

tions can change the outcome from heads to tails and vice versa. There is

no real randomness in classical mechanics, just what is often called sensitive

dependence to initial conditions—a small change in the input can get ampli-

fied and produce an entirely different outcome. The underlying idea con-

cerning randomness in quantum mechanics is different. The randomness

is true randomness.

The sequence NSSNNNSS … that we obtained from measuring spin in two

directions is considered to be truly random, as we shall see. The sequence

of coin tosses, HTTHHHTT … appears random, but the classical laws of

physics are deterministic and this apparent randomness would disappear if

we could make our measurements with infinite accuracy.

At this stage it is natural to question this. Einstein certainly did not like

this interpretation, famously saying that God does not play dice. Couldn’t

there be a deeper theory? If we knew more information about the initial

configurations of our electrons, couldn’t it be the case that the final results

would no longer be random but completely determined? Couldn’t there be

hidden variables—once we know the values of these variables, the apparent

randomness disappears? In what follows we will present the mathemati-

cal theory in which true randomness is used. Later we will return to these

questions. We will describe a clever experiment to distinguish between the

hidden variable and the true randomness hypotheses. This experiment has

been performed several times. The outcomes have always shown that the

randomness is real and that there is no simple hidden variable theory that

can eliminate it.

We started this chapter by saying that a qubit can be represented by the

spin of an electron or the polarization of a photon. We will show how the

models for spin and polarization are related.

Photons and Polarization

It is often said that we are not aware of the strange quantum phenom-

ena because they only occur at incredibly small scales and are not appar-

ent at the scales of our everyday life. There is some truth to this, but

there is an experiment that is completely analogous to measuring spin

of electrons that can be performed with very little apparatus. It concerns

polarized light.

12  Chapter 1

To perform these experiments you need three squares of linear polar-

ized film. Start by taking two of the squares and putting one in front of

the other. Keep one square fixed and rotate the other by ninety degrees.

You will find that light passes through the pair of filters when they are

aligned in one direction, but is completely blocked when one of the filters

is rotated by ninety degrees. This is not particularly exciting. But now rotate

the two filters so that no light passes through, take the third filter, rotate it

by forty-five degrees, and slide it between the other two. Amazingly, light

passes through the region where the three filters overlap—no light passes

through the overlap of just the original two filters, but it does where all

three overlap.

I heard about this experiment with three filters several years ago. I asked

a friend who is a physicist if he had any polarized sheet. He invited me to

his lab, where he had an enormous roll of it. He cut a piece off and gave

it to me. I used scissors to cut it into three squares of about an inch by an

inch and performed the experiment—and it worked! This experiment is so

simple and yet so surprising. I have kept the three squares in my wallet ever

since.

When we measure polarization we find that photons are polarized in

two perpendicular directions, both of which are perpendicular to the direc-

tion of travel of the photon. The polarized square lets through photons

that are polarized in one of the two directions and absorb the photons that

are polarized in the other. The polarized squares correspond to the Stern-

Gerlach apparatus. Sending light through a square can be considered mak-

ing a measurement. As with spin, there are two possible outcomes: Either

the direction of polarization is directly aligned with the orientation of the

square, in which case the photon passes through, or the direction of polar-

ization is perpendicular to the orientation of the square, in which case the

photon is absorbed.

We start by assuming that our square has vertical orientation so that it

lets through photons with vertical polarization and absorbs the ones with

horizontal polarization, and consider a number of experiments that corre-

spond to the ones we described for electron spin.

First, suppose that we have two squares, both with the same orienta-

tion, so they both let through photons with vertical polarization. If we

look at the squares individually they look gray, as is expected. They are

both absorbing some photons—those with horizontal polarization. If we

Spin  13

then slide one of the squares over the other, there is minimal change. The

amount of light let through the two overlapping squares is about the same

as the amount that comes through each square when they are not overlap-

ping. This is depicted in figure 1.8.

We will now rotate one of the squares through ninety degrees. Assuming

we are not looking at light reflecting off a shiny surface, or light coming

directly from a computer screen, but we are in normal light conditions, the

proportion of horizontally polarized photons is equal to the proportion

of vertically polarized ones, and both squares will look equally gray. We

repeat the experiment of overlapping these squares. This time no light is let

through the region of overlap, as depicted in figure 1.9.

The third experiment is to take the third sheet and rotate it through

forty-five degrees. Under normal light conditions nothing appears to hap-

pen as we rotate the square. It maintains the same shade of gray. We now

slide this square between the other two squares, one of which has verti-

cal orientation, and the other has horizontal orientation. The result, as we

noted earlier, is both surprising and unintuitive. Some light comes through

the region of overlap of all three squares. (This is depicted in figure 1.10.)

These polarized squares are sometimes called filters, but clearly they are

(a) Two polarized sheets (b) Slightly overlapping (c) Fully overlapping

Figure 1.8
Two linear polarized squares with the same orientation.

(a) Two polarized sheets (b) Slightly overlapping (c) Fully overlapping

Figure 1.9
Two linear polarized squares with different orientations.

14  Chapter 1

not acting in the conventional ways that filters work. More light comes

through three filters than comes through two!

We will give a brief description of what is happening. Later we will see

the mathematical model that describes both spin and polarization.

Recall our quantum clock. We can ask if the hand is pointing at twelve,

or we can ask if the hand is pointing at six. The information we gain from

either question tells us which of the numbers 12 or 6 the hand is pointing

to, but the Yes/No answers are reversed. For the polarized squares the analo-

gous questions are asked by rotating the square by ninety degrees—not one

hundred and eighty. The information we obtain is the same. The difference

is that if the answer is yes, the photon passes through the filter and we can

perform more measurements on it, but if the answer is no, the filter absorbs

the photon, so we cannot ask it further questions.

The first two experiments involved just two sheets and are telling us

exactly the same thing: When we repeat a measurement, we get the same

result. In both experiments we are measuring the polarization in the verti-

cal and horizontal directions two times. In these experiments, the photons

that pass through the first filter have vertical orientations. The first experi-

ment, where the second filter also has vertical orientation, we are asking

the question, “Is the photon vertically polarized?” twice and we receive

the answer “Yes” twice. In the second experiment, the second question is

changed to “Is the photon horizontally polarized?” and receives the answer

“No.” Both experiments give us the same information, but the negative

answer for the second question in the second experiment means that the

photon is absorbed and so, unlike the first experiment, it is not available

for further questioning.

In the third experiment, the filter that has been rotated through forty-

five degrees is now measuring the polarization at angles of 45° and 135°. We

Figure 1.10
Three linear polarized squares with different orientations.

Spin  15

know that the photons coming through the first filter are polarized verti-

cally. When measured by the second filter, half of the photons are found to

be polarized in the 45° direction and half in the 135° directions. The ones

with 45° polarization pass through the filter, and the others are absorbed.

The third filter again measures the polarization in the vertical and hori-

zontal directions. The photons entering have 45° polarization, and when

measured in the vertical and horizontal directions, half will have vertical

polarization and half will have horizontal polarization. The filter absorbs

the vertically polarized photons and lets through those that are polarized

horizontally.

Conclusions

We started this chapter by saying that classical bits can be represented by

everyday objects like switches in the on or off position, but that qubits are

generally represented by the spin of electrons or the polarization of pho-

tons. Spin and polarization are not nearly so familiar to us and have proper-

ties that are quite unlike their classical counterparts.

To measure spin, you first have to choose a direction and then measure

it in that direction. Spin is quantized: When measured, it gives just two pos-

sible answers—not a continuous range of answers. We can assign classical

bits to these results. For example, if we obtain an N we can consider it to be

the binary digit 0, and if we obtain an S we can consider it to be the binary

digit 1. This is exactly how we get answers from a quantum computation.

The last stage of the computation is to take a measurement. The result will

be one of two things, which will be interpreted as either 0 or 1. Although

the actual computation will involve qubits, the final answer will be in terms

of classical bits.

We have only just started our study, so we are quite limited in what we

can do. We can, however, generate random strings of binary digits. The

experiment that generated random strings of Ns and Ss can be rewritten

as a string of 0s and 1s. Consequently measuring spins of electrons first in

the vertical and then in the horizontal direction gives a random string of

0s and 1s. This is probably the simplest thing that we can do with qubits,

but surprisingly this is something that cannot be done with a classical

computer. Classical computers are deterministic. They can compute strings

that pass various tests for randomness, but these are pseudorandom, not

16  Chapter 1

random. They are computed by some deterministic function, and if you

know the function and the initial seed input, you can calculate exactly the

same string. There are no classical computer algorithms that generate truly

random strings. Thus, already we can see that quantum computations have

some advantages over classical ones.

Before we start to describe other quantum computations we need to

develop a precise mathematical model that describes what happens when

we measure spin in various directions. This is started in the next chapter

where we study linear algebra—the study of the algebra associated with

vectors.

2  Linear Algebra
Chapter 2
Linear Algebra

© Massachusetts Institute of TechnologyAll Rights Reserved

Quantum mechanics is based on linear algebra. The general theory uses

infinite dimensional vector spaces. Fortunately for us, to describe spin or

polarization we need only finite dimensions, which makes things much

easier. In fact, we need only a few tools. At the end of this chapter I have

given a list. The rest of the chapter explains how to use these tools and what

the calculations mean. There are many examples. It is important to work

carefully through all of them. The mathematics introduced here is essential

to everything that follows. Like much mathematics, it can seem compli-

cated when it is first introduced, but it becomes almost second nature with

practice. The actual computations only involve addition and multiplica-

tion of numbers, along with an occasional square root and trigonometric

function.

We will be using Paul Dirac’s notation. Dirac was one of the founders

of quantum mechanics, and his notation is used extensively through-

out both quantum mechanics and quantum computing. It is not widely

used outside these disciplines, which is surprising given how elegant and

useful it is.

But first, we begin with a brief description of the numbers we will be

using. These are real numbers—the standard decimal numbers with which

we are all familiar. Practically every other book on quantum computation

uses complex numbers—these involve the square root of negative one. So,

let’s start by explaining why we are not going to be using them.

Complex Numbers versus Real Numbers

Real numbers are straightforward to use. Complex numbers are—well, more

complicated. To talk about these numbers we would have to talk about

18  Chapter 2

their moduli and explain why we have to take conjugates. For what we are

going to do, complex numbers are not needed and would only add another

layer of difficulty. Why then, you ask, do all the other books use complex

numbers? What can you do with complex numbers that you cannot do

with real ones? Let’s briefly address these questions.

Recall that we measured the spin of an electron at various angles. These

angles are all in one plane, but we live in a three-dimensional world. We

compared measuring spin to using our quantum clock. We could only ask

about directions given by the hand moving around the two-dimensional

face. If we move to three dimensions, our analog would not be a clock

face, but a globe with the hand at its center pointing to locations on the

surface. We could ask, for example, if the hand is pointing to New York.

The answer would be either that it is, or that it is pointing to the point

diametrically opposite New York. The mathematical model for spin in

three dimensions uses complex numbers. The computations involv-

ing qubits that we will look at, however, need to measure spin in only

two dimensions. So, though our description using real numbers is not

quite as encompassing as that using complex numbers, it is all that we

need.

Finally, complex numbers provide an elegant way of connecting trigo-

nometric and exponential functions. At the very end of the book we will

look at Shor’s algorithm. This would be hard to explain without using

complex numbers. But this algorithm also needs continued fractions,

along with results from number theory and results about the speed of an

algorithm for determining whether a number is prime. There would be a

significant jump in the level of mathematical sophistication and knowl-

edge needed if we were to describe Shor’s algorithm in full detail. Instead

we will describe the basic ideas that underlie the algorithm, indicat-

ing how these fit together. Once again, our description will use only real

numbers.

So, for what we are going to do, complex numbers are not needed. If,

however, after reading this book, you want to continue studying quantum

computation, they will be needed for more advanced topics.

Now that we have explained why we are going to stay with the real num-

bers, we begin our study of vectors and matrices.

Linear Algebra  19

Vectors

A vector is just a list of numbers. The dimension of the vector is the number

of numbers in the list. If the lists are written vertically, we call them column

vectors or kets. If the lists are written horizontally, we call them row vectors

or bras. The numbers that make up a vector are often called entries. To illus-

trate, here is a three-dimensional ket and a four-dimensional bra:

2

0 5

3

1 0 23. ,

−

















−[]π .

The names bra and ket come from Paul Dirac. He also introduced nota-

tion for naming these two types of vectors: a ket with name v is denoted by

v ; a bra with name w is denoted by w . So we might write

v =
−

















2

0 5

3

. and w = −[]1 0 23π .

Later we will see why we use two different symbols to surround the

name, and the reason that tells us which side the angled bracket goes. But,

for now, the important thing is to remember that kets refer to columns

(think of the repeated “k” sound) and that bras, as usual, have their entries

arranged horizontally.

Diagrams of Vectors

Vectors in two or three dimensions can be pictured as arrows. We will look

at an example using a = 





3

1
. (In what follows we will often use kets for

our examples, but if you like you can replace them with bras.) The first

entry, 3 in this example, gives the change in the x-coordinate from the ini-

tial point to the terminal point. The second entry gives the change in the

y-coordinate going from the initial point to terminal point. We can draw

this vector with any initial point—if we choose (a, b) as the coordinates of

its initial point, then the coordinates of its terminal point will be at (a+3,

b+1). Notice that if the initial point is drawn at the origin, the terminal

point has coordinates given by the entries of the vector. This is convenient,

20  Chapter 2

and we will often draw them in this position. Figure 2.1 shows the same ket

drawn with different initial points.

Lengths of Vectors

The length of a vector is, as might be expected, the distance from its initial

point to its terminal point. This is the square root of the sum of squares

of the entries. (This comes from the Pythagorean theorem.) We denote the

length of a ket a by a , so for a = 





3

1
 we have a = + =3 1 102 2 .

More generally, if a

a

a

an

=



















1

2

�
, then a a a an= + +…+1

2
2

2 2 .

Vectors of length 1 are called unit vectors. Later we will see that qubits

are represented by unit vectors.

x1 2 3 4

y

1

2

3

4

a =
3
1

a =
3
1

a =
3
1

Figure 2.1
Same ket drawn in different positions.

Linear Algebra  21

Scalar Multiplication

We can multiply a vector by a number. (In linear algebra, numbers are often

called scalars. Scalar multiplication just refers to multiplying by a number.)

We do this by multiplying each of the entries by the given number. For

example, multiplying the ket a

a

a

an

=



















1

2

�
 by the number c gives c

ca

ca

ca

a

n

=



















1

2

�
.

It is straightforward to check that multiplying a vector by a positive

number c multiplies its length by a factor of c. We can use this fact to enable

us to get vectors of different lengths pointing in the same direction. In

particular, we will often want to have a unit vector pointing in the direc-

tion given by a non–unit vector. Given any non-zero vector a , its length

is a . If we multiply a by the reciprocal of its length, we obtain a unit

vector. For example, as we have already seen, if a = 





3

1
 then a = 10.

If we let

u = 





=



















1
10

3

1

3
10
1
10

,

then

u = 



 + 



 = + = =3

10
1
10

9
10

1
10

1 1
2 2

.

Consequently, u is a unit vector that points in the same direction as a .

Vector Addition

Given two vectors that have the same type—they are both bras or both

kets—and they have the same dimension, we can add them to get a new

vector of the same type and dimension. The first entry of this vector just

comes from adding the first entries of the two vectors, the second entry

22  Chapter 2

from adding the two second entries, and so on. For example, if a

a

a

an

=



















1

2

�

and b

b

b

bn

=



















1

2

�
, then a b

a b

a b

a bn n

+ =

+
+

+



















1 1

2 2

�
.

Vector addition can be pictured by what is often called the parallelo-

gram law for vector addition. If the vector b is drawn so that its initial

point is at the terminal point of a , then the vector that goes from the

initial point of a to the terminal point of b is a b+ . This can be drawn

giving a triangle.

We can interchange the roles of a and b , drawing the initial point of

a at the terminal point of b . The vector that goes from the initial point

of b to the terminal point of a is b a+ . Again, this gives a triangle. But

we know that a b b a+ += . So if we draw the triangle construction for

a b+ and b a+ where both the vectors have the same initial and terminal

points, the two triangles connect to give us a parallelogram with the diago-

nal representing both a b+ and b a+ . Figure 2.2 illustrates this where

a = 





3

1
, b = 





1

2
, and consequently a b b a+ += =

4

3





.

x1 2 3 4

y

1

2

3

4

a

b

a b

Figure 2.2
Parallelogram law for vector addition.

Linear Algebra  23

Orthogonal Vectors

Figure 2.2 helps us visualize some basic properties of vector addition. One

of the most important comes from the Pythagorean theorem. We know

that if a, b, and c represent the lengths of the three sides of a triangle,

then a b c2 2 2+ = if and only if the triangle is a right triangle. The picture

then tells us that two vectors a and b are perpendicular if and only if

a b a b2 2 2+ = + .

The word orthogonal means exactly the same thing as perpendicular,

and it is the word that is usually used in linear algebra. We can restate

our observation: Two vectors a and b are orthogonal if and only if

a b a b2 2 2+ = + .

Multiplying a Bra by a Ket

If we have a bra and a ket of the same dimension, we can multiply them—

the bra on the left and the ket on the right—to obtain a number. This is

done in the following way, where we suppose that both a and b are

n-dimensional:

a a a an= []1 2 �   and  b

b

b

bn

=



















1

2

�
.

We use concatenation to denote the product. This just means that we

write down the terms side by side with no symbol between them. So the

product is written a b . By squeezing the symbols even closer the vertical

lines coincide and we get a b , which is the notation we will use. The defi-

nition of the bra-ket product is

a b a a a

b

b

b

a b a b a bn

n

n n= []



















= + + +1 2

1

2
1 1 2 2�

�
� .

The vertical lines of the bras and kets are “pushed together,” which helps

us to remember that the bra has the vertical line on the right side and the

ket has it on the left. The result consists of terms sandwiched between angle

brackets. The names “bra” and “ket” come from “bracket,” which is almost

24  Chapter 2

the concatenation of the two names. Though this is a rather weak play on

words, it does help us to remember that, for this product, that the “bra” is

to the left of the “ket.”

In linear algebra this product is often called the inner product or the dot

product, but the bra-ket notation is the one used in quantum mechanics,

and it is the one that we will use throughout the book.

Now that we have defined the bra-ket product, let’s see what we can do

with it. We start by revisiting lengths.

Bra-kets and Lengths

If we have a ket denoted by a , then the bra a with the same name is

defined in the obvious way. They both have exactly the same entries, but

for a they are arranged vertically, and for a horizontally.

a

a

a

a

a a a a

n

n=



















= []

1

2
1 2�

� .

Consequently, a a a a an= + + … +1
2

2
2 2, and so the length of a can be

written succinctly as a a a= .

To illustrate, we return to the example where we found the length of

a = 





3

1
: a a = []





= + =3 1
3

1
3 1 102 2 . Then we take the square root to

obtain a = 10.

Unit vectors are going to become very important in our study. To see

whether a vector is unit—has length 1—we will repeatedly use the fact that

a ket a is a unit vector if and only if a a = 1.

Another important concept is orthogonality. The bra-ket product can

also tell us when two vectors are orthogonal.

Bra-kets and Orthogonality

The key result is: Two kets a and b are orthogonal if and only if

a b = 0. We will look at a couple of examples and then give an explanation

of why this result is true.

Linear Algebra  25

Let a = 





3

1
, b = 





1

2
 and c =

−





2

6
. We calculate a b and a c .

a b = []





= + =3 1
1

2
3 2 5

a c = []
−





= − + =3 1
2

6
6 6 0

Since a b ≠ 0, we know that a and b are not orthogonal. Since

a c = 0, we know that a and c are orthogonal.

Why does this work? Here is an explanation for two-dimensional kets.

Let a
a

a
= 





1

2
 and b

b

b
= 





1

2

, then a b
a b

a b
+ =

+
+







1 1

2 2

. We calculate the

square of the length of a b+ .

a b a b a b
a b

a b

a b a b

a a

+ = + +[]
+
+







= +() + +()
= +

2
1 1 2 2

1 1

2 2

1 1
2

2 2
2

1
2 2 11 1 1

2
2
2

2 2 2
2

1
2

2
2

1
2

2
2

1 1 2 2

2

2

b b a a b b

a a b b a b a b

+() + + +()
= +() + +() + +())

= + +a b a b2 2 2

Clearly this number equals a b2 2+ if and only if 2 0a b = . Now

recall our observation that two vectors a and b are orthogonal if and

only if a b a b2 2 2+ = + . We can restate this observation using our cal-

culation for the square of the length of a b+ to say: Two vectors a and

b are orthogonal if and only if a b = 0.

Though we have shown this for two-dimensional kets, the same argu-

ment can be extended to kets of any size.

Orthonormal Bases

The word “orthonormal” has two parts; ortho from orthogonal, and nor-

mal from normalized which, in this instance, means unit. If we are working

with two-dimensional kets, an orthonormal basis will consist of a set of two

unit kets that are orthogonal to one another. In general, if we are working

with n-dimensional kets, an orthonormal basis consists of a set of n unit

kets that are mutually orthogonal to one another.

26  Chapter 2

We begin by looking at two-dimensional kets. The set of all two-

dimensional vectors is denoted by 2. An orthonormal basis for 2 consists

of a set containing two unit vectors b1 and b2 that are orthogonal. So,

given a pair of kets, to check whether they form an orthonormal basis, we

must check first to see if they are unit vectors, and then check whether they

are orthogonal. We can check both of these conditions using bra-kets. We

need b b1 1 1= , b b2 2 1= , and b b1 2 0= .

The standard example, which is called the standard basis, is to take

b1

1

0
= 




 and b2

0

1
= 




. It is straightforward to check that the two bra-ket

properties are satisfied. While
1

0

0

1




















, is a particularly easy basis to find,

there are infinitely many other possible choices. Two of these are

1
2
1
2

1
2

1
2

−























































, and

1
2
3

2

3
2
1
2



















−



































, .

In the last chapter we considered measuring the spin of a particle. We

looked at spin measured in the vertical direction and in the horizontal

direction. The mathematical model for measuring spin in the vertical direc-

tion will be given using the standard basis. Rotating the measuring appara-

tus will be described mathematically by choosing a new orthonormal basis.

The three two-dimensional bases* that we have listed will all have impor-

tant interpretations concerning spin, so instead of naming the vectors in

the bases with letters we will use arrows, with the direction of the arrow

related to the direction of spin. Here are the names we are going to use:

↑ = 





↓ = 





→ =
−



















1

0

0

1

1
2
1
2

, , , ← =



















1
2

1
2

, ↗ =
−



















1
2

3
2

,

and ↙ =



















3
2
1
2

.

*  Note that the word bases is the plural of basis and of base. The word is pronounced

differently depending on what the singular term is. We will always be using it for

the plural of basis. In this case, it is pronounced “BAY-sees.”

Linear Algebra  27

Our three bases can be written more succinctly as ↑ ↓{ }, , → ←{ },

and ↗ ↙, .{ } Since these are orthonormal, we have the following bra-ket

values.

↑ ↑ = ↓ ↓ = ↑ ↓ = ↓ ↑ =
→ → = ← ← = → ← = ← → =

= = = =

1 1 0 0

1 1 0 0

1 1 0 0↗ ↗ ↙ ↙ ↗ ↙ ↙ ↗

Vectors as Linear Combinations of Basis Vectors

Given a ket and an orthonormal basis, we can express the ket as a weighted

sum of the basis vectors. Although at this stage it is not clear that this is use-

ful, we will see later that this is one of the basic ideas on which our math-

ematical model is based. We start by looking at two-dimensional examples.

Any vector v in 2 can be written as a multiple of ↑ plus a multiple

of ↓ . This is equivalent to the rather obvious fact that for any numbers c

and d the equation

c

d
x x





= 





+ 





1 2

1

0

0

1

has a solution. Clearly, this has a solution of x c1 = and x d2 = , and this is

the only solution.

Can any vector v in 2 be written as a multiple of → plus a multiple

of ← ? Equivalently, does the following equation have a solution for any

numbers c and d?

c

d
x x





= → + ←1 2 .

How do we solve this? We could replace the kets with their two-

dimensional column vectors and then solve the resulting system of two

linear equations in two unknowns. But there is a far easier way of doing

this using bras and kets.

First, take the equation and multiply both sides on the left by the bra →

This gives us the following equation.

→ 





= → → + ←()
c

d
x x1 2

Next, distribute the terms on the right side of the equation.

28  Chapter 2

→ 





= → → + → ←
c

d
x x1 2

We know both of the bra-kets on the right side. The first is 1. The second

is 0. This immediately tells us that x1 is equal to → 





| .
c

d
 So, we just need

to evaluate this product.

→ 





= − 






= () − () = −()| / / / / /
c

d

c

d
c d c d1 2 1 2 1 2 1 2 2 .

Consequently, x c d1 2= −() / .

We can use exactly the same method to find x2 . We start with the same

initial equation
c

d
x x





= → + ←1 2 and multiply both sides on the left by

the bra ← |.

← 





= ← → + ← ← = +|
c

d
x x x x1 2 1 20 1.

So, x
c

d
c d c d2 1 2 1 2 1 2 1 2 2=  







= () + () = +()/ / / / / .

This means that we can write

c

d
c d c d





= −() → + +() ←
2 2

.

The sum on the right consists of multiplying the basis vectors by cer-

tain scalars and then adding the resulting vectors. I described it earlier as

a weighted sum of the basis vectors, but you have to be careful with this

interpretation. There is no reason for the scalars to be positive. They can be

negative. In our example, if c were to equal –3 and d were to equal 1, both of

the weights, c d−() / 2 and c d+() / 2, would be negative. For this reason

the term linear combination of the basis vectors is used instead of weighted

sum.

Now let’s move to n dimensions. Suppose that we are given an

n-dimensional ket | v and an orthonormal basis b b bn1 2, , ,�{ }. Can we

write | v as a linear combination of the basis vectors? If so, is there a unique

way of doing this? Equivalently, does the equation

Linear Algebra  29

v x b x b x b x bi i n n= + + + + +1 1 2 2 � �

have a unique solution? Again, the answer is yes. To see this we will show

how to find the value for xi. The calculation follows exactly the same

method we used in two dimensions. Start by multiplying both sides of

the equation by bi . We know that b bi k equals 0 if i k≠ and equals 1 if

i k= . So, after multiplying by the bra, the right side simplifies to just xi,

and we obtain that b v xi i| = . This tells us that x b v1 1= | , x b v2 2= | , etc.

Consequently, we can write | v as a linear combination of the basis vectors:

v b v b b v b b v b b v bi i n n= + + + + +1 1 2 2 � �

At this stage, this all seems somewhat abstract, but it will all become

clear in the next chapter. Different orthonormal bases correspond to choos-

ing different orientations to measure spin. The numbers given by the bra-

kets like b vi | are called probability amplitudes. The square of b vi | will

give us the probability of v jumping to bi when we measure it. This will

all be explained, but understanding the equation written above is crucial

to what follows.

Ordered Bases

An ordered basis is a basis in which the vectors have been given an order,

that is, there is a first vector, a second vector, and so on. If b b bn1 2, , ,�{ }

is a basis, we will denote the ordered basis by b b bn1 2, , ,�()—we change

the brackets from curly to round. For an example, we will look at 2. Recall

that the standard basis is ↑ ↓{ }, . Two sets are equal if they have the same

elements—the order of the elements does not matter, so ↑ ↓{ } = ↓ ↑{ }, , .

The two sets are identical.

However, for an ordered basis the order the basis vectors are given mat-

ters. ↑ ↓() ≠ ↓ ↑(), , . The first vector in the ordered basis on the left is not

equal to the first vector in the ordered basis on the right, so the two ordered

bases are distinct.

The difference between unordered bases and ordered bases might seem

rather pedantic, but it is not. We will see several examples where we have

the same set of basis vectors in which the order is different. The permuta-

tion of the basis vectors will give us important information.

30  Chapter 2

As an example, earlier we noted that the standard basis ↑ ↓{ }, cor-

responds to measuring the spin of an electron in the vertical direction.

The ordered basis ↑ ↓(), will correspond to measuring the spin when the

south magnet is on top of our measuring apparatus. If we flip the apparatus

through 180°,we will also flip the basis elements and use the ordered basis

↓ ↑(), .

Length of Vectors

Supposing that we have been given a ket | v and an orthonormal basis

b b bn1 2, , ,�{ }, we know how to write | v as a linear combination of

the basis vectors. We end up with v b v b b v b b v b b v bi i n n= + + + + +1 1 2 2| | | |� � .

v b v b b v b b v b b v bi i n n= + + + + +1 1 2 2| | | |� � . To simplify things, we will write this as v c b c b c b c bi i n n= + + + + +1 1 2 2 � � .

v c b c b c b c bi i n n= + + + + +1 1 2 2 � � . There is a useful formula for the length of v . It’s

v c c c ci n
2

1
2

2
2 2 2= + + + +� � � .

Let’s quickly see why this is true. We know that v v v2 = | .

Using v c b c b c bn n= + + +1 1 2 2 | � we obtain

v v c b c b c b c b c b c bn n n n| = + + +() + + +()1 1 2 2 1 1 2 2� � .

The next step is to expand the product of the terms in the parentheses.

This looks as though it is going to be messy, but it is not. We again use the

facts that b bi k equals 0 if i k≠ and equals 1 if i k= . All the bra-ket prod-

ucts with different subscripts are 0. The only bra-kets that are nonzero are

the ones where the same subscript is repeated, and these are all 1. Conse-

quently, we end up with v v c c c ci n| = + + + +1
2

2
2 2 2� � .

Matrices

Matrices are rectangular arrays of numbers. A matrix M with m rows and n

columns is called an m n× matrix. Here are a couple of examples:

A B=
−





=
















1 4 2

2 3 0

1 2

7 5

6 1

A has two rows and three columns so it is a 2 3× matrix. B is a 3 2× matrix.

We can think of bras and kets as being special types of matrices: bras have

just one row, and kets have just one column.

Linear Algebra  31

The transpose of a m n× matrix M , denoted MT , is the n m× matrix

formed by interchanging the rows and the columns of M. The ith row of M

becomes the ith column of MT , and the jth column of M becomes the jth

row of MT . For our matrices A and B we have:

A BT T= −
















= 





1 2

4 3

2 0

1 7 6

2 5 1

Column vectors can be considered as matrices with just one column,

and row vectors can be considered as matrices with just one row. With this

interpretation, the relation between bras and kets with the same name is

given by a a T|= and a a T= | .

Given a general matrix that has multiple rows and columns, we think of

the rows as denoting bras and the columns as denoting kets. In our exam-

ple, we can think of A as consisting of two bras stacked on one another or

as three kets side by side. Similarly, B can be considered as three bras stacked

on one another or as two kets side by side.

The product of the matrices A and B uses this idea. The product is

denoted by AB. It’s calculated by thinking of A as consisting of bras and B

of kets. (Remember that bras always come before kets.)

A
a

a
= 





1

2

, where a1 1 4 2= −[] and a2 2 3 0= [].

B b b= []| |1 2 , where b1

1

7

6

=
















 and b2

2

5

1

=















.

The product AB is calculated as follows:

AB
a

a
b b

a b a b

a b a b
= 




[] = 





=
× − × +

1

2
1 2

1 1 1 2

2 1 2 2

1 1 4 7 2

| |

| |

×× × − × + ×
× + × + × × + × + ×







=
− −





6 1 2 4 5 2 1

2 1 3 7 0 6 2 2 3 5 0 1

15 16

23 19 

Notice that the dimension of the bras in A is equal to the dimension of

the kets in B. We need to have this in order for the bra-ket products to be

32  Chapter 2

defined. Also notice that AB BA≠ . In our example, BA is a 3 3× matrix, so

it is not even the same size as AB.

In general, given an m r× matrix A and an r n× matrix B, write A in

terms of r-dimensional bras and B in terms of r-dimensional kets.

A

a

a

am

=



















1

2

|

|

|

�
B b b bn= []| | |1 2 � , 

The product AB is the m n× matrix that has a bi j| as the entry in the ith

row and jth column, that is,

AB

a b a b a b a b

a b a b a b a b

a b

j n

j n

i

=

1 1 1 2 1 1

2 1 2 2 2 2

1

| | | |

| | | |

|

� �
� �

� � � � � �
aa b a b a b

a b a b a b a b

i i j i n

m m m j m n

| | |

| | | |

2

1 2

� �
� � � � � �

� �



























Reversing the order of multiplication gives BA, but we cannot even begin

the calculation if m is not equal to n because the bras and kets would have

different dimensions. Even if m is equal to n, and we can multiply them,

we would end up with a matrix that has size r r× . This is not equal to

AB, which has size n n× , if n is not equal to r. Even in the case when n,

m and r are all equal to one another, it is usually not the case that AB will

equal BA. We say that matrix multiplication is not commutative to indicate

this fact.

Matrices with the same number of rows as columns are called square

matrices. The main diagonal of a square matrix consists of the elements on

the diagonal going from the top left of the matrix to the bottom right. A

square matrix that has all leading diagonal entries equal to 1 and all other

entries equal to 0 is called an identity matrix. The n n× identity matrix is

denoted by In.

I I2 3

1 0

0 1

1 0 0

0 1 0

0 0 1

= 





=
















…, ,

Linear Algebra  33

The identity matrix gets its name from the fact that multiplying matrices

by the identity is analogous to multiplying numbers by 1. Suppose that A is

an m n× matrix. Then I A AI Am n= = .

Matrices give us a convenient way of doing computations that involve

bras and kets. The next section shows how we will be using them.

Matrix Computations

Suppose that we are given a set of n-dimensional kets b b bn1 2, , ,�{ } and

we want to check to see if it is an orthonormal basis. First, we have to check

that they are all unit vectors. Then we have to check that the vectors are

mutually orthogonal to one another. We have seen how to check both of

these conditions using bras and kets, but the calculation can be expressed

simply using matrices.

We begin by forming the n n× matrix A b b bn= []1 2 � , then take

its transpose.

A

b

b

b

T

n

=



















1

2

|

|

|

�

Then we take the product A AT .

A A

b

b

b

b b b

b b b b b b

b b bT

n

n

n

=


















[] =

…1

2
1 2

1 1 1 2 1

2 1

|

|

|

�
�

| | |

| 22 2 2

1 2

| |

| | |

b b b

b b b b b b

n

n n n n

…

…



















� � � �

Notice that the entries down the main diagonal are exactly what we

need to calculate in order to find if the kets are unit. And the entries off

the diagonal are what we have to calculate to see if the kets are mutually

orthogonal. This means that the set of vectors is an orthonormal basis if

and only if A A IT
n= . This equation gives a succinct way of writing down

everything that we need to check.

Though it is a concise expression, we still need to do all the calculations

to find the entries. We need to calculate all the entries along the main

diagonal in order to check that the vectors are unit. However, we don’t need

to calculate the entries below the main diagonal. If i j≠ then one of b bi k|

34  Chapter 2

and b bk i| will be above and the other below the main diagonal. These two

bra-ket products are equal, and once we have calculated one we don’t need

to calculate the other. So, after we have checked that all the main diagonal

entries are 1, we just need to check that all the entries above (or below) the

diagonal are 0.

Now that we have checked that b b bn1 2, , ,�{ } is an orthonormal

basis, suppose that we are given a ket v and want to express it as a linear

combination of the basis vectors. We know how to do this.

v b v b b v b b v b b v bi i n n= + + + + +1 1 2 2 � �

Everything can be calculated using the matrix AT.

A v

b

b

b

v

b v

b v

b v

T

n n

=



















=



















1

2

1

2

|

|

|

|

|

|

� �

This has been a long chapter in which much mathematical machinery

has been introduced. But the mathematics has been building, and we now

have a number of ways for performing calculations. Three key ideas that we

will need later are summarized in the final section. (They are at the end of

the chapter for easy reference.) Before we conclude we look at some naming

conventions.

Orthogonal and Unitary Matrices

A square matrix M that has real entries and has the property that M MT is

equal to the identity matrix is called an orthogonal matrix.

As we saw in the last section, we can check to see whether we have an

orthonormal basis by forming the matrix of the kets and then checking

whether the resulting matrix is orthogonal. Orthogonal matrices will also

be important when we look at quantum logic gates. These gates also cor-

respond to orthogonal matrices.

Two important orthogonal matrices are

1
2

1
2

1
2

1
2

−



















 and

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















.

Linear Algebra  35

The 2 2× matrix corresponds to the ordered basis ← →(), , which we

will meet in the next chapter where we will see how it is connected to

measuring spin in the horizontal direction. We will also meet exactly the

same matrix later. It is the matrix corresponding to a special gate, called the

Hadamard gate.

The 4 4× matrix corresponds to taking the standard basis for 4 and

ordering with the last two vectors interchanged. This matrix is associated

with the CNOT gate. We will explain later exactly what gates are, but practi-

cally all of our quantum circuits will be composed of just these two types of

gates. So, these orthogonal matrices are important!

(If we were working with complex numbers, the matrix entries could

be complex numbers. Matrices with complex entries that correspond to

orthogonal matrices are called unitary.** Real numbers are a subset of the

complex numbers, so all orthogonal matrices are unitary. If you look at

practically every other book on quantum computing, they will call the

matrices describing the CNOT gate and the Hadamard gate unitary, but we

are calling them orthogonal. Both are correct.)

Linear Algebra Toolbox

Here is a list of three tasks that we will need to perform repeatedly. These are

all easy to do. The methods for tackling each task are given.

(1)	 Given a set of n-dimensional kets b b bn1 2, , ,�{ }, check to see if it is

an orthonormal basis.

To do this, first construct A b b bn= []1 2 � . Then compute A AT .

If this is the identity matrix, we have an orthonormal basis. If it isn’t,

we don’t.

(2)	 Given an orthonormal basis b b bn1 2, , ,�{ } and a ket v , express the

ket as a linear combination of the basis vectors, that is, solve

v x b x b x b x bi i n n= + + +1 1 2 2 � � .

To do this, construct A b b bn= []1 2 � . Then

**  A matrix M is unitary if M M† is the identity matrix, where M † means first trans-

pose M, then take the conjugate of all the entries.

36  Chapter 2

x

x

x

A v

b v

b v

b vn

T

n

1

2

1

2

� �



















= =



















|

|

|

(3)	 Given an orthonormal basis b b bn1 2, , ,�{ } and

v c b c b c b c bi i n n= + + +1 1 2 2 � � , find the length of v .

To do this, use v c c c ci n
2

1
2

2
2 2 2= + + + +� � � .

Now that we have the tools, we return to the study of spin.

3  Spin and Qubits
Chapter 3
Spin and Qubits

© Massachusetts Institute of TechnologyAll Rights Reserved

The first chapter described measurements involving the spin of an electron.

We saw that if you measure the spin in the vertical direction, you don’t

obtain a continuum of values, but just two of them: Either the electron has

its north pole vertically upward, or it is vertically downward. If we measure

the spin first in the vertical direction and then once more in the same direc-

tion, we obtain exactly the same result for both measurements. If the first

measurement shows that the electron has its north pole upward, then so will

the second measurement. We also saw that if we measure first in the vertical

direction and then in the horizontal direction, the electrons will have spin

N and S in direction 90° each with probability of one half. It doesn’t matter

what the first measurement is; the second measurement will give a random

choice of either N or S. The second chapter introduced the mathematics of

linear algebra. The goal of this chapter is to combine these previous two

chapters, giving a mathematical model that describes the measurement of

spin. We will then show how this relates to qubits. But before we start this

description, we introduce the mathematics of probability.

Probability

Imagine that we have a coin and we repeatedly toss it, counting both the

number of tosses and the number of times it comes up heads. If the coin is

fair—equally likely to land heads up as tails up—the ratio of the number of

heads to the number of tosses, after tossing it a large number of times, will

be close to one half. We say that the probability of the outcome “heads”

is 0.5.

In general, we perform an experiment—often we will call it making

a measurement—that has a finite number of possible outcomes. We will

38  Chapter 3

denote these by E E En1 2, , ,… . The underlying assumption is that the result

of the experiment, or measurement, will be one and only one of these n

outcomes. Associated with outcome Ei is a probability pi . Probabilities must

be numbers between 0 and 1 that sum to 1. In the case of tossing a coin,

the two outcomes are getting a head and getting a tail. If the coin is fair, the

probability of each event is 1/2.

We return to the experiments involving the spin of a particle from the

first chapter using a slightly more formal notation to describe them. Sup-

pose that we are going to measure the spin in direction 0°. There are two

possible outcomes that we will denote as N and S. Both of these outcomes

will have an associated probability. We will denote by pN the probability

of obtaining N, and pS the probability of obtaining S. If we already know

that our electron has spin N in direction 0°, then we know that when we

measure again in this direction we will get the same result, so, in this case,

pN = 1 and pS = 0. On the other hand, if we know our electron has spin N

in direction 90° and we now measure in direction 0°, then we are equally

likely to obtain N and S as the outcome, so, in this case p pN S= = 0 5. .

Mathematics of Quantum Spin

We will now present the mathematical model that describes quantum spin.

It uses both probabilities and vectors.

The basic model is given by a vector space. When we make a measure-

ment there will be a number of possible outcomes. The number of out-

comes determines the dimension of this underlying vector space. For

spin, there are just two possible outcomes from any measurement, so

the underlying vector space is two-dimensional. We will take the space

to be 2—this is the standard two-dimensional plane with which we are

all familiar. This is fine for our purposes because we are only rotating our

measuring apparatus in the plane. If we also wanted to consider all pos-

sible three-dimensional rotations of the apparatus, the underlying space

would still be two-dimensional—two is still the number of possible out-

comes for each measurement—but instead of using vectors with real coef-

ficients, we would have to use vectors that involve complex numbers. The

underlying vector space would then be the two-dimensional complex space

denoted 2. For the reasons listed in the previous chapter, 2 is fine for

our needs.

Spin and Qubits  39

We will not consider all of the vectors in 2, just the unit vectors. For

kets, this means we are restricting to kets of the form v
c

c
= 





1

2

, where

c c1
2

2
2 1+ = .

Choosing a direction to measure spin corresponds to choosing an

ordered, orthonormal basis b b1 2,(). The two vectors in the basis corre-

spond to the two possible outcomes for the measurements. We will always

associate N with the first basis vector and S with the second. Before we

measure the spin, the particle will be in a spin state given by a linear combi-

nation of b1 and b2 , that is, it has the form c b bc1 1 2 2+ . We will some-

times refer to this as a state vector and sometimes just call it a state. After

we measure, its state vector will jump to either b1 or b2 . This is one of

the major ideas in quantum mechanics: Measurement causes the state vec-

tor to change. The new state is one of the basis vectors associated with the

measurement. The probability of getting a particular basis vector is given

by the initial state. The probability of its being b1 is c1
2; the probability

of b2 is c2
2. The numbers c1 and c2 are called the probability amplitudes.

It’s important to remember that the probability amplitudes are not prob-

abilities. They can be positive or negative. It’s the squares of these numbers

that are probabilities. To make everything more concrete, we will return

to the experiments where we measured in spin the vertical and horizontal

directions.

As we mentioned in the previous chapter, the ordered orthonormal

basis corresponding to measuring spin in the vertical direction is given by

↑ ↓(), , where ↑ = 





1

0
 and ↓ = 





0

1
. The first vector listed in the basis

corresponds to the electron having spin N in direction 0° and the second

vector to S in direction 0°.

The spin in the horizontal direction is given by the ordered orthonormal

basis → ←(), , where → =
−



















1
2
1
2

 and ← =



















1
2

1
2

. The first vector listed

in the basis corresponds to the electron having spin N in direction 90° and

the second vector to S in direction 90°.

We first measure spin in the vertical direction. Initially, we might not

know the spin state of the incoming electron, but it must be a unit vector

40  Chapter 3

and so can be written as c c1 2↑ + ↓ , where c c1
2

2
2 1+ = . We now perform

the measurement. Either the electron is diverted upward in which case the

state jumps to ↑ or it is diverted downward in which case its state jumps

to ↓ . The probability of it being diverted upward is c1
2 and the probability

of it being diverted downward is c2
2 .

We now repeat exactly the same experiment, measuring the spin

once more in the vertical direction. Suppose that the electron was

deflected upward by the first set of magnets. We know it is in spin state

↑ = ↑ + ↓1 0 . When we measure again, the state jumps to ↑ with

probability 1 12 = , or to ↓ with probability 0 02 = . This just means that it

remains in state ↑ , and so is deflected upward once more.

Similarly, if the electron was deflected downward it will be in state

↓ = ↑ + ↓0 1 . No matter how many times we measure it in the vertical

direction it will remain in this state, telling us that however many times we

repeat the experiment the electron will keep being deflected downward. As

we noted in the first chapter, if we repeat exactly the same experiment, we

get exactly the same outcome.

Instead of repeatedly measuring spin in the vertical direction, we will

first measure spin in the vertical direction and then measure spin in the

horizontal direction. Suppose that we have just performed the first mea-

surement. We have measured spin in the vertical direction, and let us sup-

pose that the electron has spin N in direction 0°. Its state vector is now

↑ . Since we are next going to measure spin in the horizontal direction, we

have to write this vector in terms of the orthonormal basis that corresponds

to this direction, which means we must find the values of x1 and x2 that

solve ↑ = → + ←x x1 2 . We know how to do this: It’s the second tool in

the toolbox listed at the end of the last chapter.

First construct the matrix A by stacking the kets that form the orthonor-

mal basis side by side.

A = [] =
−



















→ ←

1
2

1
2

1
2

1
2

Then calculate AT ↑ to get the probability amplitudes with respect to

the new basis.

Spin and Qubits  41

AT ↑ =

−























=



















1
2

1
2

1
2

1
2

1

0

1
2

1
2

This tells us that ↑ = → + ←1
2

1
2

.

When we measure in the horizontal direction the state will jump to

→ with probability 1
2

1
2

2




 = , or it will jump to ← with probability

1
2

1
2

2




 = . This tells us that the probability that the electron has spin N

in the 90° direction is equal to the probability that it has spin S in the

90°direction; both probabilities are exactly one-half.

Notice that we didn’t really need to calculate the matrix A to do this

calculation. The matrix that we need to use is AT . We can calculate this by

stacking the bras that correspond to the orthonormal basis on top of one

another. We must, of course, keep things in the same order. The left to right

ordering of kets corresponds to the top to bottom ordering of bras, so the

first element of the basis is the topmost bra.

In the first chapter we measured the spin three times. The first and third

measurements were in the vertical direction, the second was in the hori-

zontal direction. We will describe the mathematics that corresponds to the

third measurement. After the second measurement, the state vector of our

electron will have one of two values. It will be either → or ← . We are

now going to measure the spin in the vertical direction, so we need to

express these as linear combinations of the vertical orthonormal basis. This

gives → = ↑ − ↓1
2

1
2

 and ← = ↑ + ↓1
2

1
2

. In either case, when

we measure spin in the vertical direction the state vector will jump to either

↑ or to ↓ , each occurring with probability one-half.

Equivalent State Vectors

Suppose that we are given a number of electrons and are told that their

spins are given by either ↑ or by − ↑ . Can we distinguish between the

two cases? Is there any measurement that we can perform that would tell

them apart? The answer is that there is not.

42  Chapter 3

To see this, let’s suppose that we choose a direction in which to measure

spin. This is equivalent to choosing an ordered, orthonormal basis. We will

denote this basis by b b1 2,().
Suppose our electron has state ↑ . We have to find the values of a and b

that solve the equation ↑ = +a b b b1 2 . When we perform the measure-

ment, the probability of the spin being N is a2, and the probability of the

spin being S is b2.

Suppose our electron has state − ↑ . For exactly the same values of a and

b, we have − ↑ = − −a b b b1 2 . When we perform the measurement the

probability of the spin being N is −() =a a2 2 and the probability of the spin

being S is −() =b b2 2.

We get exactly the same probabilities for both cases, so there is no mea-

surement that can distinguish electrons with state vectors of form ↑ from

those of − ↑ .

Similarly, given electrons with state v there is no way to distinguish

them from electrons with state − v . Since these states are indistinguish-

able, they are considered equivalent. Saying that an electron has spin given

by v means exactly the same as saying that it has spin given by − v .

To help illustrate this point further, consider these four kets:

1
2

1
2

↑ + ↓ − ↑ − ↓1
2

1
2

1
2

1
2

↑ − ↓ − ↑ + ↓1
2

1
2

By the preceding remarks, we know that
1
2

1
2

↑ + ↓ and − ↑ − ↓1
2

1
2

− ↑ − ↓1
2

1
2

 are equivalent, and that
1
2

1
2

↑ − ↓ and − ↑ + ↓1
2

1
2

 are

equivalent. So, these four kets describe at most two distinguishable states.

But what about
1
2

1
2

↑ + ↓ and
1
2

1
2

↑ − ↓ ? Do these describe the

same state, or are they distinguishable?

We do have to be a little careful. If we choose to measure the spin in

the vertical direction, these two kets are not distinguishable. In both cases,

we get ↑ or ↓ each occurring with probability of a half. But we know

that
1
2

1
2

↑ + ↓ = ← and
1
2

1
2

↑ − ↓ = → . Consequently, if we

measure in the 90° direction, we will obtain S for the first ket and N for

the second. This choice of basis does distinguish them, and so they are not

equivalent.

Spin and Qubits  43

One thing that is probably not clear at the moment is how the basis asso-

ciated with a direction of measurement is chosen. We have seen that the

basis associated with measuring in the vertical (0°) direction is
1

0

0

1


















,

and with the horizontal (90°) direction is

1
2
1
2

1
2

1
2

−





















































, .

But where did these bases come from? Later, when we come to Bell’s

theorem, we will need the bases associated with 120° and 240°. What are

these? We answer these questions in the next section.

The Basis Associated with a Given Spin Direction

We begin with our measurement apparatus. We take the vertical direction

as the starting point and start rotating in the clockwise direction. As we

have already noted, when it has been rotated through 90°, we are measur-

ing in the horizontal direction. By the time it’s rotated through 180°, we are

measuring the vertical direction once more. An electron that has spin N in

direction 0° will have spin S in direction 180°, and an electron that has spin

S in direction 0° will have spin N in direction 180°. Clearly, saying a magnet

has its north pole in one direction conveys exactly the same information as

saying the magnet has its south pole in the opposite direction, and conse-

quently we need only to rotate our apparatus through an angle between 0°

and 180° to cover all possible directions.

We will now consider bases. We take the standard basis
1

0

0

1


















, as our

starting point. This can be pictured as two vectors in the plane, as shown

in figure 3.1.

Now we rotate these vectors. The general picture, with rotation of α° is

depicted in figure 3.2. The vector
1

0





 rotates to

cos

sin

α
α

()
− ()






, and

0

1





 rotates

to
sin

cos

α
α

()
()






.

Rotating through α° changes our initial ordered, orthonormal basis from

1

0

0

1


















, to
cos

sin

sin

cos

α
α

α
α

()
− ()







()
()













, .

44  Chapter 3

cos(a)

–sin(a)

x

y

a

a

1

1

sin(a)

cos(a)

Figure 3.2
The standard basis rotated by α°.

x1

y

1
0
1

1
0

Figure 3.1
The standard basis.

If the basis is rotated through 90° it becomes
cos

sin

sin

cos

90

90

90

90

°()
− °()







°()
°()













, ,

which simplifies to
0

1

1

0−


















, . As we previously noted,
0

1−





 is equivalent

to
0

1





, so rotating through 90° brings us back to a basis equivalent to the

original one, except that the order of the basis elements has been inter-

changed (i.e., N and S have been interchanged).

Spin and Qubits  45

We will let θ denote the angle we are rotating our measurement appa-

ratus and α the angle we rotate our basis vectors. We have seen that we

get a complete set of directions as θ goes from 0° to 180°, and that we get

a complete set of rotated bases as α goes from 0° to 90°. Once we reach

θ = 180° or equivalently α = 90°, N and S measured in direction 0° are

interchanged.

We make the natural definition that θ = 2α. Consequently, the basis

associated with rotating our apparatus by θ is
cos

sin

sin

cos

θ
θ

θ
θ

/

/
,

/

/

2

2

2

2
()

− ()






()
()













.

Figure 3.3 illustrates this.

Rotating the Apparatus through 60°

As an example to illustrate our formula, we look at what happens when

we rotate our measuring apparatus by 60°. Suppose that we first measured

our electron to have spin N in direction 0°. We will measure it again using

the apparatus turned through 60°. What is the probability that it gives

a result of N?

In this case the associated basis to the rotated apparatus is

cos

sin

sin

cos

30

30

30

30

°()
− °()







°()
°()













, which simplifies to
3 2

3 2

/
,

/−
























1/2

1/2
.

Since the electron initially was measured to have spin N in direction 0°,

its state vector after the initial measurement was
1

0





. We must now express

this as a linear combination of the new basis vectors. To get the coordinates

relative to the new basis we can multiply the state vector on the left by the

matrix consisting of the bras of the basis. This gives:

N
S

(a) Measurement angle

cos 2

sin 2

,
sin 2

cos 2

(b) Basis

Figure 3.3
Rotating measuring apparatus by θ°.

46  Chapter 3

3 2

3 2

1

0
3 2/

/

/−

















=










1/2

1/2 1/2
,

telling us that

1

0
3 2

3 2

3 2






=
−









 +









/

/

/1/2
1/2

1/2
.

So the probability of getting N when we measure in the 60° direction is

3
2 3 4

2() = / .

The Mathematical Model for Photon Polarization

In most of the book we will restrict our attention to measuring spin of

electrons, but in the first chapter we said that we could rewrite everything

in terms of the polarization of photons. In the next few sections we will

explain the analogy between electron spin and photon polarization and

give the mathematical model of polarization.

We start by associating the angle of 0° with a polarized filter in the verti-

cal direction, that is, a filter that lets through photons that are polarized

vertically, which means that horizontally polarized photons are absorbed

by the filter. As with the spin of electrons, we associate the standard basis

1

0

0

1


















, to the angle of 0°. The vector
1

0





 corresponds to a vertically

polarized photon and the vector
0

1





 to a horizontally polarized one.

We will rotate the filter through an angle β°. It now lets through pho-

tons that are polarized in direction β° and blocks photons that are polarized

perpendicularly to β°.

The mathematical model follows that for the spin of electrons. For each

direction, there is an ordered orthonormal basis b b1 2,() associated with

making a polarization measurement in this direction. The ket b1 corre-

sponds to a photon that is polarized in the given direction—that is, that

passes through the filter. The ket b2 corresponds to a photon that is polar-

ized orthogonally to the given direction—that is absorbed by the filter.

A photon has a polarization state given by a ket, v . This can be written

as a linear combination of the vectors in the basis: v d b d b= +1 2 21 .

Spin and Qubits  47

When the polarization is measured in the direction given by the ordered

basis, the result will be that the photon is polarized in the given direction

with probability d1
2 and polarized perpendicularly with probability d2

2 ; that

is, the probability the photon passes through the filter is d1
2 , and the prob-

ability it is absorbed is d2
2 .

If the result of the measurement is that the photon is polarized in the

given direction—it passes through the filter—then the state of the photon

becomes b1 .

The Basis Associated with a Given Polarization Direction

Recall that if we start with our standard basis
1

0

0

1


















, and rotate

these vectors though an angle α, we obtain the new orthonormal basis

cos

sin

sin

cos

α
α

α
α

()
− ()







()
()













, . Also recall that rotating through an angle of 90°

brings us back to the same basis as the original, except that the order of the

basis elements has been interchanged.

Now consider rotating a polarized filter through an angle β. When β

is 0°, we are measuring in the vertical and horizontal direction. The ver-

tically polarized photons pass through the filter, and the horizontally

polarized photons are absorbed. Once β reaches 90° we will be measuring

photons in the vertical and horizontal direction, but now the vertically

polarized photons are absorbed and the horizontally polarized ones pass

through. In this case, β = 90° corresponds to α = 90°, and, in general, we can

take α = β.

In conclusion, the ordered orthonormal basis associated with rotating a

polarized filter through an angle β is
cos

sin

sin

cos

β
β

β
β

()
− ()







()
()













, .

The Polarized Filters Experiments

Using our model, we describe the experiments that we looked at in the first

chapter.

In the first experiment we have two polarized squares. One measures

polarization in direction 0° and the other in direction 90°. No light is let

through the region of overlap, as depicted in figure 3.4.

48  Chapter 3

The basis associated with 0° is the standard orthonormal basis. The

basis associated with 90° is the same, except the order of the elements

has been changed. A photon that passes through the first filter has had a

measurement made—it is vertically polarized—and so is now in state
1

0





.

We now measure it with the second filter. This lets through photons with

state vector
0

1






and absorbs photons with state vector
1

0






. Consequently,

any photon that passes through the first filter is absorbed by the second.

In the three-filter experiment we have the two filters arranged as above.

We take the third sheet and rotate it through 45°, and slide this sheet

between the other two. Some light comes through the region of overlap of

all three squares. This is depicted in figure 3.5.

The ordered bases for the three filters are
1

0

0

1


















, ,

1
2
1
2

1
2

1
2

−





















































, and

0

1

1

0


















, . A photon that passes through all three filters will have had

Figure 3.5
Three polarized squares.

(a) Two polarized sheets (b) Slightly overlapping (c) Fully overlapping

Figure 3.4
Two polarized squares.

Spin and Qubits  49

three measurements made. Photons that pass through the first filter will

be in state
1

0





.

The second measurement corresponds to passing through the filter

rotated by 45°. We need to rewrite the state of the photon using the appro-

priate basis.

1

0
1
2

1
2
1
2

1
2

1
2

1
2







=
−



















+



















The probability of a photon passing through the second filter once it has

gone through the first is 1
2

1
2

2




 = . Consequently, half the photons that

pass through the first filter will pass through the second filter. Those that

do will now be in state

1
2
1
2

−



















.

The third filter corresponds to making a measurement using the third

basis. We must rewrite the state of our photon using this basis.

1
2
1
2

1
2

0

1
1
2

1

0−



















= − 





+ 





The third filter lets through photons corresponding to state
0

1





. The

probability of this is −



 =1

2
1
2

2

. Consequently, half the photons that pass

through the first two filters will pass through the third filter.

We have shown how the mathematical model relates the spin of an elec-

tron to the polarization of a photon. This model is also exactly what we

need to describe qubits.

Qubits

A classical bit is either 0 or 1. It can be represented by anything that has two

mutually exclusive states. The standard example is a switch that can be in

50  Chapter 3

either the on or off position. In classical computer science the measurement

of bits does not enter the picture. A bit is a bit. It is either 0 or it is 1, and

that is all there is to it. But for qubits the situation is more complicated, and

measurement is a crucial part of the mathematical description.

We define a qubit to be any unit ket in 2 . Usually, given a qubit, we will

want to measure it. If we are going to measure it, we also need to include a

direction of measurement. This is done by introducing an ordered ortho-

normal basis b b0 1,(). The qubit can be written as a linear combination—

often called a linear superposition—of the basis vectors. In general, it will

have the form d bb d0 0 1 1+ . After we measure, its state will jump to either

b0 or b1 . The probability of its being b0 is d0
2 ; the probability of b1 is

d1
2. This is exactly the same model we have been using, but now we connect

the classical bits 0 and 1 to the basis vectors. We will associate the b0 basis

vector with the bit 0 and the b1 basis vector with the bit 1. So when we

measure the qubit d bb d0 0 1 1+ we will obtain 0 with probability d0
2 and 1

with probability d1
2 .

Since a qubit can be any unit ket and there are infinitely many unit kets,

there are infinitely many possible values for a qubit. This is quite unlike

classical computation, where we just have two bits. It is important, how-

ever, to notice that to get information out of a qubit we have to measure it.

When we measure it we will get either 0 or 1, so the result is a classical bit.

We will give some illustrative examples using Alice, Bob, and Eve.

Alice, Bob, and Eve

Alice, Bob, and Eve are three characters that often appear in cryptogra-

phy. Alice wants to send a confidential message to Bob. Unfortunately, Eve

wants to eavesdrop with evil intent. How should Alice encrypt her messages

so that Bob can read them but Eve cannot? This is the central question of

cryptography. We will look at it later. But for the moment we will just con-

centrate on Alice sending Bob a stream of qubits.

Alice measures qubits using her orthonormal basis, which we will denote

as a a0 1,(). Bob measures the qubits that Alice sends to him using his

orthonormal basis b b0 1,().
Suppose that Alice wants to send 0. She can use her measuring apparatus

to sort qubits into either state a0 or a1 . Since she wants to send 0, she

sends a qubit in state a0 . Bob is measuring with respect to his ordered

Spin and Qubits  51

basis. To calculate what happens we must write a0 as a linear combina-

tion of Bob’s basis vectors. It will have the form a d b d b0 0 0 1 1= + . When

Bob measures the qubit one of two things happens: Either it jumps to state

b0 with probability d0
2 and he writes down 0, or it jumps to state b1 with

probability d1
2 and he writes down 1.

You might be wondering why Bob and Alice don’t choose to use the

same basis. If they did this, Bob would receive 0 with certainty whenever

Alice sent 0 and receive 1 with certainty whenever Alice sent 1. This is

true, but remember Eve. If she also chooses the same basis, then she too

will receive exactly the same message as Bob. We will see later that there

are good reasons for why Alice and Bob might choose different bases to

thwart Eve.

For an example, Alice and Bob might to choose to measure their qubits

using either the basis
1

0

0

1


















, or the basis

1
2
1
2

1
2

1
2

−





















































, . The calculations

are exactly as before, where we were considering spin in the vertical and

horizontal directions. The only change is that we replace N with 0 and S

with 1. Only if Alice and Bob choose to use the same basis will Bob end up

with exactly the bit that Alice wanted to send. If they choose to use differ-

ent bases, then half of the time Bob gets the correct bit, but half of the time

he gets the wrong one. This might not seem very useful, but we will see at

the end of this chapter that Alice and Bob can use these two bases to secure

their communications.

A couple of chapters from now, Alice and Bob will each choose one of

three bases at random. These correspond to measuring the spin of an elec-

tron in the directions of 0°, 120°, or 240°. We will need to analyze all the

possibilities, but now, to give a concrete example, we will have Alice mea-

sure in the 240° direction and Bob in the 120° direction.

We know the orthonormal basis in direction θ is
cos

sin

sin

cos

θ
θ

θ
θ

/

/
,

/

/

2

2

2

2
()

− ()






()
()













cos

sin

sin

cos

θ
θ

θ
θ

/

/
,

/

/

2

2

2

2
()

− ()






()
()













. Consequently, Alice’s basis is
1/2

1/2

−

−








 −















3 2

3 2

/
,

/
 and Bob’s is

1/2

1/2−
























3 2

3 2

/
,

/
. Since multiplying a ket by –1 gives an equivalent

ket, we can simplify Alice’s basis to
1/2

1/23 2

3 2

/
,

/







 −
















. (Notice that this

52  Chapter 3

is the basis for direction 60° that we looked at earlier, with the order of the

basis vectors switched. There is nothing surprising about this. In fact, that’s

exactly what we expect. Measuring N in direction 240° is exactly the same

as measuring S in direction 60°.)

If Alice wants to send 0, she sends the qubit
1/2

3 2/









 . To calculate what

Bob measures we need to write this as a linear superposition of his basis

vectors. We can get the probability amplitudes by forming the matrix con-

sisting of the bras of his basis vectors and then multiplying the qubit by

this matrix.

1/2

1/2

1/2 1/2−



















 =

−









3 2

3 2 3 2 3 2

/

/ / /
.

This tells us that

1/2
1/2

1/2

1/23 2 3 2
3 2

3 2

/ /
/

/







 = −

−








 +









.

This means that when Bob measures the qubit, he gets 0 with probability

1/4 and 1 with probability 3/4. Similarly, it can be checked that if Alice

sends 1, Bob will get 1 with probability 1/4 and 0 with probability 3/4.

It can also be checked, and it is an excellent exercise, that if Alice and

Bob choose from the three bases, where the third is the standard basis, and

end up with different bases, then Bob always gets the correct bit with prob-

ability 1/4.

Probability Amplitudes and Interference

If you drop a stone into a pond, waves propagate outward from where the

stone hits the water. If you drop two stones, the waves propagating form

one stone can interfere with the waves coming from the other one. If the

waves are in phase—the peaks or the troughs coincide—then you get con-

structive interference: The amplitude of the resulting wave increases. If the

waves are out of phase—the peak of one meets the trough of the other—

then you get destructive interference: The amplitude of the resulting wave

decreases.

A qubit has the form d b d b0 0 1 1+ , where d0 and d1 are the probability

amplitudes. The square of these numbers gives the probabilities that the

Spin and Qubits  53

qubit jumps to the corresponding basis vector. Probabilities are not allowed

to be negative, but probability amplitudes can be. This fact allows both

constructive and destructive interference to take place.

As an example, consider the qubits that we are denoting by ← and →

If we measure either of them in the standard basis, they will jump to either

↑ or ↓ . Each has a probability of 1/2 of occurring. If we are translating

this back to bits, we will get either a 0 or a 1 with equal probability. We now

take a superposition of the original two qubits, v = ← + →1
2

1
2 . If

we were to measure v in the horizontal direction, we would get either ←

or → with equal probability. But if we measure in the vertical direction we

get 0 with certainty, because

v = ← + → =



















+
−



















= 





1
2

1
2

1
2

1
2

1
2

1
2

1
2
1
2

1
1

0
++ 





0
0

1
.

The terms in ← and → that give 0 have interfered constructively, and

the terms that give 1 have interfered destructively.

This will be important when it comes to quantum algorithms. We want

to choose linear combinations carefully so that terms that we are not inter-

ested in cancel, but terms that we are interested in are amplified.

There are a very limited number of things that we can do with one qubit,

but one thing we can do is to enable Alice and Bob to communicate securely.

Alice, Bob, Eve, and the BB84 Protocol

We often want to send secure messages. All Internet commerce depends on

it. The standard way that messages are encrypted and decrypted uses two

steps. The first step is when first contact is made. The two parties agree on a

key—a long string of binary digits. Once they both have the same key, they

then use it to both encode and decode messages from one another. The

security of the method comes from the key. It is impossible to decode the

messages between the two parties without knowing the key.

Alice and Bob want to communicate securely. Eve wants to eavesdrop.

Alice and Bob want to agree on a key, but they need to be sure that Eve does

not know it.

54  Chapter 3

The BB84 protocol derives its name from its inventors, Charles Bennett

and Gilles Brassard, and the year that it was invented, 1984. It uses two sets

of ordered, orthonormal bases: the standard one,
1

0

0

1


















, , that we used

for measuring spin in the vertical direction, and so is denoted by V, and

1
2
1
2

1
2

1
2

−





















































, that we used for measuring spin in the horizontal direction,

and so is denoted by H. In both cases, the classical bit 0 will correspond to

the first vector in the ordered basis and 1 to the second.

Alice chooses the key that she wants to send to Bob. This is a string of

classical bits. For each bit, Alice chooses one of the two bases V and H at

random and with equal probability. She then sends Bob the qubit consist-

ing of the appropriate basis vector. For example, if she wants to send 0 and

chooses V, she will send
1

0





, if she chooses H, she will send

1
2
1
2

−



















. She

follows the same process for each bit, keeping a record of which basis she

has used for each bit. If the string is 4n binary digits long, she will end up

with a string of length 4n consisting of Vs and Hs. (The reason we are using

4n and not n will become clear in a moment, but n should be a fairly large

number.)

Bob also chooses between the two bases at random and with equal prob-

ability. He then measures the qubit in his chosen basis. Bob does this for

each bit, and he keeps a record of which basis he has used. At the end of the

transmission he also ends up with two strings of length 4n, one consisting

of 0s and 1s from his measurements, the other consisting of Vs and Hs cor-

responding to the bases he chose.

Alice and Bob are choosing the basis for each bit at random. Half the

time they end up using the same basis, while half the time they use differ-

ent bases. If they both choose the same basis, then Bob will obtain the bit

that Alice is sending with certainty. If they choose different bases, then half

the time Bob gets the right bit, but half the time it is the wrong bit—no

information is transmitted when they choose different bases.

Alice and Bob now compare their strings of Vs and Hs over an unen-

crypted line. They keep the bits corresponding to the times when they both

Spin and Qubits  55

used the same basis and erase the bits that correspond to times that they

used different bases. If Eve is not intercepting the message, they both end

up with the same string of binary digits that has length about 2n. They now

must check to see if Eve was listening in.

If Eve intercepts the qubit on the way from Alice to Bob, she would

really like to clone it, sending one copy on to Bob and measuring the other

qubit. Unfortunately for Eve, this is impossible. To obtain any information,

she has to measure the qubit that Alice has sent, and this could change the

qubit—it will end up as one of the basis vectors in the basis with which she

chooses to measure. The best she can do is to choose one of the two bases

at random, measure the qubit, and then send the qubit on to Bob. Let’s see

what happens.

Alice and Bob are interested only in the measurements where they chose

the same basis. We will restrict our attention to these times. When Alice

and Bob agree on the basis, half the time Eve will also agree, and half the

time she will choose the other basis. If all three agree on the basis, then they

will all get the same bit as the measurement. If Eve chooses the wrong basis,

then she will send a qubit that is in a superposition of Bob’s basis states.

When Bob measures this qubit he will get 0 and 1 with equal probability;

he will get the right bit one half of the time.

We now return to Alice and Bob and their strings of bits of length, at

the moment, of 2n. They know that if Eve is not intercepting qubits, these

strings will be identical. But they know that if Eve is intercepting qubits,

she is going to choose the wrong basis half the time, and in these cases Bob

will end up with the wrong bit half of the time. So, if Eve is intercepting

qubits, a quarter of Bob’s bits will disagree with Alice’s. They now compare

half of the 2n bits over an unencrypted line. If they agree on all of them,

they know Eve is not listening in and can use the other n bits as the key.

If they disagree on a quarter of the bits, they know that Eve is intercepting

their qubits. They know that they need to find another way to secure their

communication.

This is a nice example of sending one qubit at a time. There are, how-

ever, very few things that we can do with qubits that don’t interact with

one another. In the next chapter we look at what happens when we have

two or more qubits. In particular, we look at yet another phenomenon that

is not part of our classical worldview but that plays an essential part of the

quantum world: entanglement.

4  Entanglement
Chapter 4
E n t a n g l e m e n t

© Massachusetts Institute of TechnologyAll Rights Reserved

In this chapter we study the mathematics of entanglement. To do this, we

need to introduce one more idea from linear algebra: the tensor product.

We start by looking at two systems with no interaction between them.

Since there is no interaction, we could study each system by itself, without

any reference to the other system, but we will show how we can combine

the two systems using tensor products. Then we introduce the tensor prod-

uct of two vector spaces and show that most of the vectors in this product

represent what are referred to as entangled states.

Throughout this chapter there will be two qubits. Alice has one, and

Bob has another. We will begin our study by examining a case where there

is no interaction between Alice’s and Bob’s systems. This analysis initially

might seem to make something that is very simple look somewhat compli-

cated, but once we have described everything in terms of tensor products it

becomes fairly straightforward to extend the underlying ideas to the gen-

eral entangled case.

The approach we take, however, is not the approach we have taken so

far. Instead of presenting physical experiments and then deriving a mathe-

matical model, we proceed in the other direction. We will extend our model

in the simplest way possible and then see what the model predicts should

be found when we perform experiments. We find that the model predicts

the experiments accurately, but the conclusions are quite surprising.

Alice and Bob’s Qubits Are Not Entangled

We suppose that Alice is measuring using the orthonormal basis a a0 1,()

and Bob is measuring with orthonormal basis b b0 1,(). A typical qubit

for Alice is v c a c a= +0 0 1 1 , and for Bob is w d db b= +0 0 1 1 . We can

58  Chapter 4

combine these two state vectors using a new type of product that we call a

tensor product, giving us a new vector denoted by v w⊗ .

Now v w c a c a d db b⊗ = +() ⊗ +()0 0 1 0 0 11 1 . How do we multiply

these two terms using this new product? Well, we do it the most natu-

ral way possible. We expand it in the usual way we multiply out algebraic

expressions of the form a b c d+() +(). We write

c a c a d d

c d a c d a c d a c d

b b

b b b
0 0 1 0 0 1

0 0 0 0 0 1 0 1 0 0 1 1

1 1

1 1

+() ⊗ +()
= ⊗ + ⊗ + ⊗ + aa b1 1⊗

If you are familiar with the FOIL method, you should recognize that this is

exactly what we have done. To make the terminology even simpler we will

use juxtaposition of two kets to mean the tensor product, so v w⊗ will

be denoted as v w .

v w c a c a d d

c d a c d a c d a c d a

b b

b b b

= +() +()
= + + +

0 0 1 0 0 1

0 0 0 0 0 1 0 1 0 0 1 1

1 1

1 1 11 1b

Though this is just the standard way of multiplying out two expressions,

there is one thing that we have to be very careful about: The first ket in the

tensor product belongs to Alice, and the second ket belongs to Bob. For

example, v w means that v belongs to Alice and that w belongs to Bob.

The product w v means that w belongs to Alice and that v belongs to

Bob. So, in general, v w will not equal w v . The technical term for this

is to say the tensor product is not commutative.

Alice is measuring with her orthonormal basis a a0 1,() and Bob is mea-

suring with his orthonormal basis b b0 1,(). We are describing both Alice’s

and Bob’s qubits using tensor notation. This description involves the four

tensor products that come from the basis vectors: a b0 0 , a b0 1 , a b1 0 ,

and a b1 1 . These four products form an orthonormal basis for the tensor

product of Alice’s and Bob’s systems: Each of these products is a unit vector,

and they are orthogonal to one another.

At this stage, though we have introduced new notation, we have not

introduced anything new in terms of concepts. It is just the information

that we already knew, but in a different package. For example, the number

c d0 0 is a probability amplitude. Its square gives the probability that when

both Alice and Bob measure their qubits Alice’s qubit jumps to a0 , that is,

she reads 0, and Bob’s qubit jumps to b0 , that is, he reads 0. But we already

knew that the probability that Alice’s qubit would jump to a0 is c0
2 and the

Entanglement  59

probability that Bob’s would jump to b0 is d0
2 . So we really knew that the

probability that both would occur is c d0
2

0
2, which is, of course, the same as

c d0 0
2() . In a similar way, the numbers c d0

2
1
2, c d1

2
0
2, and c d1

2
1
2 give the probabili-

ties that Alice and Bob read 01, 10, and 11, respectively. (Remember that

Alice’s bit is always listed before Bob’s.)

Next we will replace these probability amplitudes using just one sym-

bol instead of two. We will let r c d= 0 0 , s c d= 0 1, t c d= 1 0 , and u c d= 1 1, so

v w r a b s a b t a b u a b= + + +0 0 0 1 1 0 1 1 . We know that r s t u2 2 2 2 1+ + + =
r s t u2 2 2 2 1+ + + = , because they are probability amplitudes. We also know that

ru = st, because both ru and st equal c c d d0 1 0 1. Now we come to the new idea.

We are going to describe the states of Alice’s and Bob’s qubits by tensors of

the form r a b s a b t a b u a b0 0 0 1 1 0 1 1+ + + . Again we stipulate that

r s t u2 2 2 2 1+ + + = , so that we can treat r, s, t, and u as probability ampli-

tudes. But we no longer insist that ru = st. We allow any values of r, s, t, and

u just as long as the sum of their squares is 1.

Given a tensor of the form r a b s a b t a b u a b0 0 0 1 1 0 1 1+ + + with

r s t u2 2 2 2 1+ + + = , there are two cases. The first case is when ru = st. In this

case we say that Alice’s and Bob’s qubits are not entangled. The second case is

when ru st≠ . In this case we say that Alice’s and Bob’s qubits are entangled.

This rule is easy to remember if the terms are written out with the subscripts

in the order we have presented them: 00, 01, 10, 11. In this order, ru are

the outer terms and st are the inner, so the qubits are not entangled if the

product of the outer terms is equal to the product of the inner ones, and

they are entangled if the products are not equal.

We will look at examples that illustrate both of these cases.

Unentangled Qubits Calculation

Suppose we are told that Alice and Bob’s qubits are given by

1
2 2

3
2 2

1
2 2

3
2 2

0 0 0 1 1 0 1 1a b a b a b a b+ + + .

We quickly calculate the products of the outer and inner probability

amplitudes. Both products equal 3
8 , so the qubits are unentangled.

The probability amplitudes tell us what happens when Alice and Bob

both make measurements. They will get 00 with probability 1/8, 01 with

probability 3/8, 10 with probability 1/8 and 11 with probability 3/8.

60  Chapter 4

What is slightly trickier is to see what happens if just one of them makes

a measurement. We start by assuming that Alice is going to make a mea-

surement, but Bob is not. To do this we begin by pulling out common fac-

tors from Alice’s perspective. We rewrite the tensor product as

a b b a b b0 0 1 1 0 1
1

2 2
3

2 2
1

2 2
3

2 2
+







+ +





.

Next, we want the expressions in the parentheses to be unit vectors, so

we divide by their lengths inside the parentheses and multiply by their

lengths outside, which gives us

1
2

1
2

3
2

1
2

1
2

3
2

0 0 1 1 0 1a b b a b b+






+ +





.

We can then pull out the common factor in the parentheses. (But

remember that it’s Bob’s, so we must keep it on the right.)

1
2

1
2

1
2

3
2

0 1 0 1a a b b+



 +






.

Written in this form, it becomes explicit that the states are not entan-

gled. We have a tensor product of a qubit that belongs to Alice with a qubit

that belongs to Bob.

From this we can deduce that if Alice measures first she will obtain 0 and

1 with equal probability. This measurement has no effect on the state of

Bob’s qubit. It was and remains

1
2

3
2

0 1b b+





.

We can also read from the factored expression that if Bob measures first

he will get 0 with probability 1/4 and 1 with probability 3/4. Again, it is

clear that Bob’s measurement has no effect on Alice’s qubit.

When the qubits are unentangled, a measurement of one of the qubits

has absolutely no effect on the other qubit. The situation is completely

different with entangled qubits. If qubits are entangled, the measurement

of one will have an effect on the other one. We will illustrate this with an

example.

Entanglement  61

Entangled Qubits Calculation

Suppose we are told that Alice’s and Bob’s qubits are given by

1
2

1
2

1
2

00 0 0 1 1 0 1 1a a a ab b b b+ + + .

We quickly calculate the products of the outer and inner probability. The

product of the outer terms is 0. Since the product of the inner terms is not

equal to 0, the two qubits are entangled.

Usually both Alice and Bob will make measurements. As in the previous

example, we can use the probability amplitudes to tell us what happens

when Alice and Bob both measure their qubits. They will get 00 with prob-

ability 1/4, 01 with probability 1/4, 10 with probability 1/2, and 11 with

probability 0. Notice that there is nothing strange going on. This is exactly

the same calculation as in the unentangled case.

We will now see what happens if just one of them makes a measurement.

We start by assuming that Alice is going to make a measurement, but Bob

is not. To do this we begin by pulling out common factors from Alice’s per-

spective. We rewrite the tensor product as

a ab b b b0 0 1 1 0 1
1
2

1
2

1
2

0+() + +



 .

As before, we want the expressions in the parentheses to be unit vectors,

so we divide by their lengths inside the parentheses and multiply by their

lengths outside, which gives us

1
2

1
2

1
2

1
2

1 00 0 1 1 0 1a ab b b b+



 + +().

In the previous example, the terms in the parentheses were the same,

and we could pull this common term out as a common factor. But in this

case the terms in the parentheses are different. This is what it means to be

entangled.

The probability amplitudes in front of Alice’s kets tell us that when she

measures she will get 0 and 1 with equal probability. But when Alice gets 0,

her qubit jumps to a0 . The combined system jumps to the unentangled

state a b b0 0 1
1
2

1
2

+(), and Bob’s qubit is no longer entangled with

Alice’s. It is 1
2

1
20 1b b+(). When Alice gets 1, again Bob’s qubit is no

longer entangled with Alice’s. It becomes b0 .

62  Chapter 4

The result of Alice’s measurement affects Bob’s qubit. If she gets 0, Bob’s

qubit becomes 1
2

1
20 1b b+(). If she gets 1, his qubit becomes b0 . This

does seem strange. Alice and Bob could be far apart. As soon as she makes

a measurement Bob’s qubit becomes unentangled, but exactly what it is

depends on Alice’s outcome.

For completeness, we will see what happens when Bob measures first.

We start with the initial tensor product.

1
2

1
2

1
2

00 0 0 1 1 0 1 1a a a ab b b b+ + +

Rewriting from Bob’s perspective gives

1
2

1
2

1
2

00 1 0 0 1 1a a a ab b+



 + +



 .

As always, we want the expressions in the parentheses to be unit vectors,

so we divide by their lengths inside the parentheses and multiply by their

lengths outside, which gives us

1
3 2

1 0
1
23

2 3
0 1 0 0 1 1a a a ab b+







+ +() .

When Bob measures his qubit he gets 0 with probability 3/4 and

1 with probability 1/4. When Bob gets 0, Alice’s qubit jumps to state
1

33
2

0 1a a+(). When he gets 1, her qubit becomes a0 .

When the first person measures her or his qubit, the second person’s

qubit immediately jumps to one of two states. These states depend on the

result of the first person’s measurement. This is quite unlike our everyday

experience. Later we will see clever ways of exploiting entangled qubits, but

first we consider superluminal communication.

Superluminal Communication

Superluminal communication is communication faster than the speed

of light. Two apparently contradictory inferences seem to be able to be

deduced concerning this. The first is that Einstein’s special theory of rela-

tivity tells us that as you travel faster, approaching the speed of light, time

slows down. If you could travel at the speed of light, time stops. And if you

Entanglement  63

travel faster than the speed of light, time would go backward. The theory

also tells us that as we approach the speed of light our mass increases with-

out bound, which means that we can never reach that speed. Also, it seems

unlikely that we could go back in time. If we could, then we run into all the

science fiction scenarios in which we can prevent some history-changing

event from happening. Time travel seems to lead to contradictions. It’s not

just physical travel that seems to be ruled out, but also communication.

If we could send messages back in time, we could still change the course

of history—we could still design scenarios in which the communication

causes some dramatic change in the present—for example, prevents us

being born. So, one of our immediate thoughts is that superluminal com-

munication should not be possible.

On the other hand, suppose that Alice and Bob are on opposite sides of

the universe and have a number of entangled qubits. These are electrons

whose spin states are entangled. Alice has one of each entangled pair of

electrons in her possession, and Bob has the other one. (Though we are

talking about entangled electrons, we should be clear that the actual elec-

trons are totally separate. It’s their spin states that are entangled.)

When Alice makes a measurement on one of her electrons, the spin state

of the corresponding electron in Bob’s possession instantaneously jumps

into one of two distinct states. Instantaneous is clearly faster than the speed

of light! Can’t entanglement be used for instantaneous communication?

Let’s suppose that each pair of the entangled electrons is in the entan-

gled spin state that we have just studied:

1
2

1
2

1
0

2
0 0 0 1 1 0 1 1a a a ab b b b+ + + .

Suppose that Alice measures the spins of her electrons before Bob mea-

sures the spin of their partners. We have seen that she gets a random string

of 0s and 1s, with each symbol occurring with equal probability.

Suppose instead that Bob measures his spins before Alice. Then Alice

measures the spins. What does she now get? When Alice makes her mea-

surement, they will both have made measurements, so we can use the

probability amplitudes of the initial expression. We know that they will

obtain 00 and 01 with probability 1/4, 10 with probability 1/2 and 11 with

probability 0. Consequently, Alice will get 0 with probability of 1
4

1
4

1
2

+ = , and 1

with probability 1
2

1
2

0+ = . So, Alice gets a random string of 0s and 1s, with

64  Chapter 4

each symbol occurring with equal probability. But this is exactly the same

situation as when she measured first. So Alice cannot tell from her measure-

ments whether they were made before or after Bob’s. All entangled states

behave this way. If there is no way of Alice and Bob being able to tell from

their measurements who went first, there certainly can be no way of send-

ing any information from one to the other.

We have shown that Alice and Bob cannot send information when their

qubits have a particular entangled state, but the argument generalizes to

any entangled state. No matter what states Alice’s and Bob’s qubits have,

it is impossible for them to send information by solely measuring their

qubits.

Now that we have seen that superluminal communication is not pos-

sible, we turn to the more prosaic task of writing tensor products using

standard bases. But afterward we will return to our exploration of entangled

qubits using the quantum clock example from the previous chapters.

The Standard Basis for Tensor Products

The standard basis for 2 is
1

0

0

1


















, . When both Alice and Bob use the

standard basis, tensor products have the form:

r s t u
1

0

1

0

1

0

0

1

0

1

1

0






⊗ 





+ 





⊗ 





+ 





⊗ 





+
00

1

0

1






⊗ 





Therefore, the standard ordered basis for  2 2⊗ is

1

0

1

0

1

0

0

1

0

1

1

0

0

1






⊗ 











⊗ 











⊗ 








, , , 



⊗ 











0

1
.

Since it has four vectors in the basis, it is a four-dimensional space. The

standard four-dimensional space is 4 with ordered basis is

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1




























































, , , 































.

We identify the basis vectors in  2 2⊗ with those in 4 , making sure to

respect the ordering.

Entanglement  65

1

0

0

0

1

0

1

0



















= 





⊗ 




, 

0

1

0

0

1

0

0

1



















= 





⊗ 




, 

0

0

1

0

0

1

1

0



















= 





⊗ 




, 

0

0

0

1

0

1

0

1



















= 





⊗ 




.    

The easiest way to remember this is by the following construction.

a

a

b

b

a
b

b

a
b

b

0

1

0

1

0
0

1

1
0

1







⊗ 





=































==



















a b

a b

a b

a b

0 0

0 1

1 0

1 1

.

Notice also that the subscripts follow the standard binary ordering: 00,

01, 10, 11.

How Do You Entangle Qubits?

This book is about the mathematics that underlies quantum computing.

It is not about how to physically create a quantum computer. We are not

going to spend much time on the details of physical experiments, but the

question of how physicists create entangled particles is such an important

one that we will briefly address it. We can represent entangled qubits by

either entangled photons or electrons. Though we often say the particles

are entangled, what we really mean is that the vector describing their states,

a tensor in  2 2⊗ , is entangled. The actual particles are separate and, as

we have just noted, can be very far apart. That said, the question remains:

How do you go about creating a pair of particles whose state vector is entan-

gled? First, we look at how physical experiments create entangled particles.

Then we look at how quantum gates create entangled qubits.

The most commonly used method at this time involves photons. The

process is called spontaneous parametric down-conversion. A laser beam

sends photons through a special crystal. Most of the photons just pass

through, but some photons split into two. Energy and momentum must be

conserved—the total energy and momentum of the two resulting photons

must equal the energy and momentum of the initial photon. The conser-

vation laws guarantee that the state describing the polarization of the two

photons is entangled.

In the universe, electrons are often entangled. At the start of the book

we described Stern and Gerlach’s experiment on silver atoms. Recall that

66  Chapter 4

the electron spins in the inner orbits canceled, leaving the lone electron

in the outer orbit to give its spin to the atom. The innermost orbit has two

electrons. These are entangled so that their spins cancel. We can think of

the state vector describing the spin of these electrons as

1
2

1

0

0

1
1
2

0

1

1

0






⊗ 





− 





⊗ 




.

Entangled electrons also occur in superconductors, and these electrons

have been used in experiments. However, often we want to have entangled

particles that are far apart—as we will see later when we talk about the

Bell test.

The main problem with using entangled electrons that are near one

another and then separating them is that they have a tendency to interact

with the environment. It is difficult to separate them without this happen-

ing. On the other hand, entangled photons are much easier to separate,

though more difficult to measure. It is possible, however, to get the best of

both worlds. This has been done by an international team based at the Delft

University of Technology in what they describe as a loophole free Bell test.

They used two diamonds separated by 1.3 kilometers. Each diamond had

slight imperfections—nitrogen atoms altered the carbon atom lattice struc-

ture in places. Electrons become trapped in the defects. A laser excited an

electron in each of the diamonds in such a way that both electrons emitted

photons. The emitted photons were entangled with the spins of the elec-

trons that they were emitted from. The photons then traveled toward one

another through a fiber optic cable and met in a beam splitter—a standard

piece of equipment that is usually used to split a beam of photons in two,

but here it is used to entangle the two photons. The photons were then

measured. The result was that the two electrons were now entangled with

one another.* (We will explain why the team was doing this experiment in

the next chapter.)

In quantum computing, we will usually input unentangled qubits and

entangle them using the CNOT gate. Later we will explain exactly what

gates are, but the actual computations involve just matrix multiplication.

We briefly look at this.

*  There is a short video on this at https://www.youtube.com/watch?v=AE8Ma

QJkRcg/.

https://www.youtube.com/watch?v=AE8MaQJkRcg/
https://www.youtube.com/watch?v=AE8MaQJkRcg/

Entanglement  67

Using the CNOT Gate to Entangle Qubits

We leave the actual definition of what a quantum gate is until later, but

we’ll just make the comment now that they correspond to orthonormal

bases or, equivalently, to orthogonal matrices.

The standard ordered basis for four-dimensional space is 4 is

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1




























































, , , 































.

The CNOT gate comes from interchanging the order of the last two ele-

ments. This results in the matrix for the CNOT gate.

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















This gate acts on pairs of qubits. To use the matrix, everything must be

written using four-dimensional vectors. We look at an example.

We start by taking the unentangled tensor product

1
2

1

1

1

0
1
2

1

0

1

0







⊗ 





=



















.

When we send qubits through the gate, they are changed. The resulting

qubits are obtained by multiplying by the matrix.

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
2
0

1
2
0

1
2
0

0

1











































=

22

1
2

1

0

0

1

























=



















This last vector corresponds to a pair of entangled qubits—the product

of the inner amplitudes is zero, which is not equal to the product of the

outer amplitudes. This can be rewritten as

68  Chapter 4

1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 




.

We will often use entangled qubits in this state. It has the very nice prop-

erty that if Alice and Bob measure in the standard basis, they will both get

1

0





, corresponding to 0, or they will both get

0

1





, corresponding to 1. The

two cases are equally probable.**

We examine this further with a quantum clock analogy.

Entangled Quantum Clocks

Recall the quantum clock metaphor. We can ask only about whether the

hand is pointing in a certain direction, and the clock will answer either that

it is or that it is pointing in the opposite direction.

We let the vector
1

0





 correspond to pointing to twelve, and

0

1






to pointing to six. Consider a pair of clocks in the entangled state

1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 




. In fact, consider one hundred pairs of clocks,

each pair of which is in this state. Suppose that you have one hundred of

these clocks, and I have the hundred partners. We are both going to ask the

same question repeatedly: Is the hand pointing toward twelve?

In the first scenario, we don’t contact one another. We just go through

the clocks one at a time and ask the question. Each time the clock will

answer either yes or no. We will write 1 if it is yes, and 0 if it is no. After we

have finished asking questions, we have a string of 0s and 1s. I analyze my

string and you analyze yours. Both strings are a random sequence of 0s and

1s. Both digits occur about the same number of times. We now contact one

another and compare strings. Both your string and my string are identical.

In all one hundred places the strings agree.

In the second scenario, we again each have one hundred clocks. This time

we make an agreement that you will measure first. You will ask your ques-

tion on the hour, and I will ask mine half an hour later. During these half-

hours between our questions you will call me and tell me what my clock’s

**  In the next chapter, we will see that Alice and Bob don’t need to stick to the

standard basis. If they both use the same orthonormal basis, no matter which one,

they will still get exactly the same results.

Entanglement  69

answer will be. At the end of the experiment we both have a string of 0s and

1s. Both strings agree in every place. Every time you called me and told me

what the result of my measurement was going to be you were exactly right.

Can we conclude that your measurements were affecting mine?

Well, suppose that I now tell you that I was cheating. I didn’t follow the

rules. In fact, I was asking the questions of the clock half an hour before

you asked yours. I knew your answer before you did. Your calls were just

confirming what I knew.

There is no way from the data that you can tell whether or not I was fol-

lowing the rules or I was cheating. There is no way you can tell whether I

am asking my questions before or after you asked yours.

There is no causation here, just correlation. As we saw earlier, we can-

not use these entangled clocks to send messages between us. But the pro-

cess is still mysterious. Albert Einstein described entanglement as implying

spooky action at a distance. Nowadays many people would say that there is

no action, just correlation. Of course, we can quibble about the definition

of “action,” but even if we agree that there is no action, there seems to be

something spooky going on.

Suppose that you and I have a pair of the entangled quantum clocks,

and we are talking on the phone to one another. Neither of us has asked

our clock a question, so they are still entangled. In this state, if you were to

ask your clock the question, you would have an equal chance of getting an

answer that the hand was pointing to twelve or six. But as soon as I ask my

clock a question, you no longer have an equal chance of getting one of the

two answers. You will get exactly the same answer as mine.

This correlation would not be spooky if when our clocks were entangled

it was decided, but unknown to us, whether both our hands were pointing

at either twelve or six. We had to wait until one of us asked the question,

and as soon as one of us knows the answer so does the other.

But this is not what our model describes. Our model says that the deci-

sion on which direction our hands are pointing is not made beforehand.

It’s made only when the first of us asks our question. This is what makes it

spooky.

In the next chapter we will look at this in detail. We will look at a model

that incorporates correlation in an intuitive and nonspooky way. Unfortu-

nately, it is wrong. John Stewart Bell came up with an ingenious test that

shows that the simple explanation is not correct and that the mysterious

spookiness has to remain.

5  Bell’s Inequality
Chapter 5
Bell’s Inequality

© Massachusetts Institute of TechnologyAll Rights Reserved

We have seen a mathematical model of a small portion of quantum mechan-

ics that concerns the spin of particles or the polarization of photons, and

that gives us the mathematics describing qubits. This is the standard model,

often called the Copenhagen interpretation after the city where Niels Bohr was

living and working.

Some of the great physicists of the early twentieth century, including

Albert Einstein and Irwin Schrödinger, didn’t like this model, with its inter-

pretation of states jumping with given probabilities to basis states. They

objected to both the use of probability and to the concept of action at a

distance. They thought that there should be a better model using “hidden

variables” and “local realism.” They weren’t objecting to using the Copen-

hagen model for doing calculations, but they thought that there should be

a deeper theory that would explain why the calculations were producing

correct answers—a theory that eliminated the randomness and explained

the mystery.

Bohr and Einstein were both interested in the philosophy of quantum

mechanics and had a series of debates about the true meaning of the theory.

In this chapter we will look at their two different viewpoints. You might be

wondering if we are digressing and that the philosophical underpinnings

are not necessary to understand quantum computation. We all now know

that Einstein and Schrödinger’s view was wrong and that the Copenhagen

model is regarded as the standard description. But Einstein and Schrödinger

were both brilliant scientists, and there are a number of reasons to study

their arguments.

The first reason is that the debates between Bohr and Einstein focused on

local realism. We will explain more about this in a moment, but essentially

local realism means that a particle can only be influenced by something

72  Chapter 5

changing in its vicinity. Practically all of us are local realists, but quantum

mechanics shows us that we are wrong. Einstein’s model seems to us to be

the natural and correct model—at least it does to me. When I first heard

of quantum entanglement, my natural assumption was to assume a model

similar to Einstein’s. You too might be thinking about entanglement incor-

rectly. These arguments are important to the philosophy of physics and

help us to understand that the mysteriousness cannot be eliminated.

John Stewart Bell was an Irish physicist. He devised an ingenious test that

could distinguish between the two models. Many were surprised that the

models were not just philosophies, but testable theories. We have learned

only a small portion of the mathematics needed for quantum mechanics,

but it is exactly what is needed to understand Bell’s result. His test has been

carried out several times. It is tricky to eliminate all possible biases in the

setup of this experiment, but more and more possible loopholes have been

excluded. The results have always been in accordance with the Copenha-

gen interpretation. Since Bell’s result is one of the most important of the

twentieth century and we have the mathematical machinery lined up, it

makes sense to look at it.

You may still be wondering what any of this has to do with quantum

computation. We will see at the end of this chapter that the ideas behind

Bell’s inequality can be used for sending encrypted messages. Also, the

entangled qubits that Bell uses will reappear when we look at quantum

algorithms. So this chapter has connections to quantum computation. But

the main reason for this chapter is that I find this material fascinating, and

I hope you will too.

We start by looking at the entangled qubits we introduced in the last

chapter and see what happens if we measure them in different bases. We

begin our analysis using the standard model—the Copenhagen model—

that we have seen in the earlier chapters.

Entangled Qubits in Different Bases

In the last chapter we looked at two entangled clocks in the state

1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 




.

We observed that if Alice and Bob each had one of the clocks, and both

asked whether the hand was pointing toward twelve, both would either get

Bell’s Inequality  73

the answer that it was or that it was pointing toward six. Both possibilities

were equally likely, but both Alice and Bob get exactly the same answer. We

now ask what happens if Alice and Bob change the direction in which they

are measuring. For example, what happens if they both ask whether the

hands are pointing to four? We know that the clocks will answer that the

hands are pointing either toward four or to ten, but will Alice and Bob get

exactly the same answer? Are both answers equally likely?

First, we give an intuitive argument for two qubits in the entangled state

1
2

1

0

0

1
1
2

0

1

1

0






⊗ 





+ 





⊗ 




.

Two electrons might represent this state. Suppose that Alice and Bob

measure the spin of their electrons in direction 0°. If Alice gets N, Bob gets

S. If Alice gets S, Bob gets N. As we mentioned earlier, this might represent

two electrons in an atom where the spins cancel. But we would expect the

spins to cancel in every direction, so we would expect that if Alice and Bob

chose a new basis for measurements they would still get spins in the oppo-

site direction. Symmetry also seems to imply that both directions should

be equally likely.

This intuitive argument leads us to conjecture that if we have entangled

qubits in the state

1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 





and then rewrite this state using a new orthonormal basis b b0 1,(), we

ought to get
1
2

1
2

0 0 1 1b b b b⊗ + ⊗ . Of course, our argument is

intuitive and clearly making intuitive arguments about something as coun-

terintuitive as quantum mechanics is not entirely persuasive, but in this

case we are correct, as we will now prove.

Proof That
1
2

1
0

1
0

1
2

0
1

0
1







⊗ 





+ 





⊗ 





 Equals
1
2

1
2

0 0 1 1b b b b⊗ + ⊗

We start by writing the kets b0 and b1 as column vectors. We let

b
a

b0 = 




 and b

c

d1 = 




. Next we express our standard basis vectors as

linear combinations of the new basis vectors. We do this in the standard

74  Chapter 5

way (using the second tool at the end of chapter 2). We start with
1

0





. The

equation

a b

c d

a

c












= 





1

0

tells us that

1

0






= 





+ 





a
a

b
c

c

d
.

Consequently,

1

0

1

0

1

0






⊗ 





= 





+ 











⊗ 





a
a

b
c

c

d
.

Rearranging the terms on the right gives

a
a

b
c

c

d






⊗ 





+ 





⊗ 





1

0

1

0
,

which can be rewritten as

a

b

a c

d

c





⊗ 





+ 





⊗ 



0 0
.

Thus,
1

0

1

0 0 0






⊗ 





= 





⊗ 





+ 





⊗ 





a

b

a c

d

c
.

A similar calculation shows that

0

1

0

1

0 0





⊗ 





= 





⊗ 





+ 





⊗ 





a

b b

c

d d
.

Adding these two results gives us

1

0

1

0

0

1

0

1 0

0





⊗ 





+ 





⊗ 





= 





⊗ 





+ 


a

b

a

b









+ 





⊗ 





+ 











c

d

c

d0

0
.

This simplifies to

a

b

a

b

c

d

c

d






⊗ 





+ 





⊗ 




,

which is just b b b b0 0 1 1⊗ + ⊗ .

Bell’s Inequality  75

So
1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 




 does equal

1
2

1
2

0 0 1 1b b b b⊗ + ⊗ .

This result tells us that if Alice and Bob have qubits that are entangled

with state
1
2

1

0

1

0
1
2

0

1

0

1






⊗ 





+ 





⊗ 




, and if they both choose to measure

their qubits with respect to an orthonormal basis b b0 1,(), the entangled

state can be rewritten as
1
2

1
2

0 0 1 1b b b b+ . When the first measurement

is made, the state jumps to either b b0 0 or to b b1 1 , where both of these

now unentangled states are equally likely to occur. The consequence is that

when Alice and Bob have both measured their qubits they will both get 0 or

they will both get 1, and both outcomes are equally likely.

For Bell’s result we want to measure the entangled qubits using three

different bases. These are the bases that correspond to rotating our mea-

suring device through 0°, 120°, and 240°. For our entangled clocks, we are

asking one of three questions, whether the hand is pointing to twelve,

to four, or to eight. If we denote these bases by ↑ ↓(), , ↘ ↖,(), and

↙ ↗,(), then the following are three descriptions of exactly the same

entangled state:

1
2

1
2

↑ ↑ + ↓ ↓ 1
2

1
2

↘ ↘ ↖ ↖+ 1
2

1
2

↙ ↙ ↗ ↗+

We now turn to Einstein and see how he viewed these entangled states.

Einstein and Local Realism

Gravity provides a good example to explain local realism. Newton’s law of

gravity gives a formula that tells us the strength of the force between two

masses. If you plug in the size of the masses, the distance they are apart, and

the gravitational constant, the formula gives the size of the attractive force.

Newton’s law transformed physics. It can be used, for example, to show

that a planet orbiting a star moves in an elliptical orbit. But though it tells

us the value of the force, it does not tell us the mechanism that connects

the planet to the sun.

Although Newton’s law of gravitation was useful for calculations, it did

not explain how gravity worked. Newton, himself, was concerned about

76  Chapter 5

this. Everyone thought that there should be some deeper theory that

explained the action of gravity. Various proposals were made, often involv-

ing an “aether” that was supposed to permeate the universe. Though there

was no consensus on how the mechanism behind gravity worked, there was

consensus that gravity was not spooky action at a distance and that some

explanation would be found. There was a belief in what we now call local

realism.

Newton’s law of gravitation was superseded by Einstein’s general theory

of gravitation. Einstein’s theory not only improved on Newton’s in terms of

accurately predicting astronomical observations that could not be deduced

using Newton’s theory, but it also gave an explanation as to how gravity

worked. It described the warping of space-time. A planet moved according

to the shape of space-time where it was located. There was no spooky action

at a distance. Einstein’s theory was not only more precise, but it also gave a

description of how gravity worked, and this description was local. A planet

moves according to the shape of space in its vicinity.

The Copenhagen interpretation of quantum mechanics, of course, rein-

troduced this idea of spooky action at a distance. When you measure a pair

of entangled qubits the state immediately changes, even if the qubits are

physically far apart. Einstein’s philosophy seems entirely natural. He had

just eliminated spooky action from the theory of gravity, and now it was

being proposed again. The difference now was that Bohr didn’t believe that

there was some deeper theory that could explain the mechanism behind

this action. Einstein disagreed.

Einstein believed he could prove that Bohr was wrong. With Boris Podol-

sky and Nathan Rosen, he wrote a paper pointing out that his special theory

of relativity implied that information could not travel faster than the speed

of light, but instantaneous action at a distance would mean that informa-

tion could be sent from Alice to Bob instantaneously. This problem became

known as the EPR paradox, for Einstein-Podolsky-Rosen.

Nowadays, the EPR paradox is usually described in terms of spin, and

this is how we will do it, but this was not how Einstein et al. described the

problem. They considered position and momentum of two entangled par-

ticles. It was David Bohm who reformulated the problem in terms of spin.

Bohm’s formulation is the one that is practically always used now, and it

is the formulation that John Stewart Bell used to calculate his important

Bell’s Inequality  77

inequality. Even though Bohm played a major role in describing and refor-

mulating the paradox, his name is usually omitted.

In the last chapter we pointed out that the Copenhagen interpretation

does not allow information to be transmitted faster than the speed of light,

and so although the EPR paradox is not really a paradox, there is still the

question of whether there can be an explanation that eliminates the spooky

action.

Einstein and Hidden Variables

In the classical view, physics is deterministic—if you know all the initial

conditions to infinite precision, then you can predict the outcome with

certainty. Of course, you can only know initial conditions to some finite

precision, meaning that there will always be some small error in what is

measured—a small difference between the measured value and the true

value. As time progresses this error can grow until we are unable to make

any sensible prediction for what happens in the long run. This idea forms

the basis for what is commonly known as sensitive dependence on initial

conditions. It explains why forecasting the weather for more than a week

or so is very unreliable. It is important to remember, however, that the

underlying theory is deterministic. The weather seems unpredictable, but

this is not due to some inherent randomness, it is just that we cannot make

measurements that are sufficiently accurate.

Another area where probability is incorporated into classical physics is in

laws concerning gases—the laws of thermodynamics—but again the under-

lying theory is still deterministic. If we know exactly the velocities and

masses of every molecule in the gas, in theory we can predict with com-

plete accuracy what happens to each molecule in the future. In practice, of

course, there are far too many molecules to consider them one by one, and

so we take average values and look at the gas from a statistical viewpoint.

This classical, deterministic view was what Einstein was referring to

when he famously said that God does not play dice with the universe. He

felt that the use of probability in quantum mechanics showed that the the-

ory was not complete. There should be a deeper theory, perhaps involving

new variables, that is deterministic but looks probabilistic if you don’t con-

sider all of these as yet unknown variables. These as yet unknown variables

became known as hidden variables.

78  Chapter 5

A Classical Explanation of Entanglement

We begin with our quantum clocks in state
1
2

1
2

↑ ↑ + ↓ ↓ . Alice and

Bob are going to ask the question about whether the hand is pointing

to twelve. The quantum model says that Alice and Bob will get exactly

the same answer: that it’s pointing to twelve or it’s pointing to six. Both

answers are equally likely. We can actually perform experiments measur-

ing the spin of entangled electrons. The experimental outcomes are exactly

what the quantum model predicts. How do we explain this with a classical

model?

The classical interpretation for the preceding situation is quite simple.

Electrons have a definite spin in any direction. Entangled electrons become

entangled through some local interaction. Again, we appeal to hidden vari-

ables and a deeper theory. We don’t know exactly what happens, but there

is some local process that puts the electrons in exactly the same spin con-

figuration state. When they are entangled, a direction of spin is chosen for

both electrons.

This can be compared to our being given a deck of cards that we shuffle.

We then take out one card without looking at it. We cut the card in two

and put the halves in two envelopes, all the time without any knowledge of

which card has been chosen. We then send the cards to Bob and Alice, who

live in different parts of the universe. Alice and Bob have no idea which

card they have. It could be anyone of the fifty-two, but as soon as Alice

opens her envelope and sees the jack of diamonds she knows that Bob’s

card is also the jack of diamonds. There is no action at a distance, and there

is nothing spooky going on.

For Bell’s result, we need to measure our entangled qubits in three dif-

ferent directions. We return to our entangled clock analogy. We will be ask-

ing one of three questions, about whether the hand is pointing to twelve,

to four, or to eight. The quantum theoretical model predicts that for each

question the answer will be either that the hand is pointing in the direction

asked or that it is pointing in the opposite direction. For each question both

answers are equally likely. But when Alice and Bob ask exactly the same

question, they will both get exactly the same answer. We can describe this

classically by giving essentially the same answer as before.

There is some local process that entangles the clocks. We don’t attempt to

describe exactly how this is done, but just appeal to hidden variables—there

Bell’s Inequality  79

is some deeper theory that explains it. But when the clocks are entangled,

definite answers to the three questions are chosen. This can be compared to

our having three decks of cards, each with different colored backs. We take

a card from the blue deck, from the red deck and the green deck. We cut

these three cards in half and mail three halves to Alice and the other three

halves to Bob. If Alice looks at her green card and sees the jack of diamonds,

she knows that Bob’s green card is also the jack of diamonds.

For our quantum clocks, the classical theory says that there is a definite

answer to each question that is already determined before we ask it. Quan-

tum theory says, contrarily, that the answer to the question is not deter-

mined up until the time we ask it.

Bell’s Inequality

Imagine that we are generating a stream of pairs of qubits that we are

sending to Alice and Bob. Each pair of qubits is in the entangled state

1
2

1
2

↑ ↑ + ↓ ↓ . Alice randomly chooses to measure her qubit in

direction 0°, 120°, or 240°. Each of these directions is chosen randomly,

each with probability 1/3. Alice doesn’t bother to keep track of the direc-

tions she has chosen, but she does write down whether she gets 0 or 1 as

the answer. (Remember, 0 corresponds to the first basis vector and 1 to the

second.) Shortly after Alice has measured her qubit, Bob chooses one of

the same three directions at random, each with probability 1/3, and mea-

sures his qubit. Like Alice, he doesn’t record the direction, just the result of

whether he obtained either 0 or 1.

In this way, both Alice and Bob generate a long string of 0s and 1s.

They then compare their strings symbol by symbol. If they agree on the

first symbol, they write down A. If they disagree on the first symbol, they

write down D. Then they look at the second symbol and write down A or D

depending on whether the symbols agree or disagree. They continue in this

way through their entire strings.

In this way they generate a new string consisting of As and Ds. What

proportion of the string is made up of As? Bell realized that the quantum

mechanics model and the classical model gave different numbers for the

answer.

80  Chapter 5

The Answer of Quantum Mechanics

The qubits are in the entangled spin state
1
2

1
2

↑ ↑ + ↓ ↓ . We have

already observed that if Alice and Bob both choose the same measurement

direction, then they will get the same answer. The question is what happens

if they choose different bases.

We will take the case when Alice chooses ↘ ↖,() and Bob chooses

↙ ↗,(). The entangled state is
1
2

1
2

↑ ↑ + ↓ ↓ , which can be

written in Alice’s basis as
1
2

1
2

↘ ↘ ↖ ↖+ . When Alice makes

her measurement, the state jumps to either ↘ ↘ or ↖ ↖ ; both are

equally likely. If it jumps to ↘ ↘ , she will write down 0. If it jumps to

↖ ↖ , she will write down 1.

Bob must now make his measurement. Suppose after Alice’s measure-

ment that the qubits are in state ↘ ↘ , so Bob’s qubit is in state ↘ . To

calculate the result of Bob’s measurement we have to rewrite this using

Bob’s basis. (We did a similar calculation on page 51.)

Writing everything using two-dimensional kets, we have:

↘ =
−















1
2
3

2

↙ =
−

−















1
2

3
2

↗ =
−

















3
2
1

2

We multiply ↘ by the matrix with rows given by the bras of Bob’s basis.

− −

−















 −















=














1
2

3
2

3
2

1
2

1
2
3

2

1
2

3
2

This tells us that ↘ ↙ ↗= +1
2

3
2

. When Bob makes his measurement,

he will get 0 with probability 1/4 and 1 with probability 3/4. So, when Alice

gets 0, Bob will get 0 with probability 1/4. It is easy to check the other case.

If Alice gets 1, Bob’s probability of also getting 1 is 1/4.

The other cases are all similar: If Bob and Alice measure in different

directions, they will agree 1/4 of the time and disagree 3/4 of the time.

Bell’s Inequality  81

To summarize: One-third of the time they measure in the same direction

and agree each time; two-thirds of the time they measure in different direc-

tions and agree on just one-quarter of these measurements. This gives the

proportion of As in the string consisting of As and Ds as

1
3

1
2
3

1
4

1
2

× + × = .

The conclusion is that the quantum mechanics model gives the answer

that in the long run the proportion of As should be one-half.

We now look at the classical model.

The Classical Answer

The classical view is that the measurements in all directions are determined

right from the start. There are three directions. A measurement in each

direction can yield either a 0 or a 1. This gives us eight configurations: 000,

001, 010, 011, 100, 101, 110, 111, where the leftmost digit gives us the

answer if we were to measure in the basis ↑ ↓(), , the middle digit gives us

the answer if we were to measure in the basis ↘ ↖,(), and the rightmost

digit gives us that answer if we were to measure in the basis ↙ ↗,().
The entanglement just means that the configurations for Alice’s and

Bob’s qubits are identical—if Alice’s qubit has configuration 001, then so

does Bob’s. We now have to figure out what happens when Alice and Bob

choose a direction. For example, if their electrons are in configuration 001

and Alice measures using basis ↑ ↓(), , and Bob measures using the third

basis, then Alice will get a measurement of 0 and Bob a measurement of 1,

and they will disagree.

The table below gives all the possibilities. The left column gives the

configurations, and the top row gives the possibilities for Alice and Bob’s

measurement bases. We will use letters to represent the bases. We denote

↑ ↓(), by a, ↘ ↖,() by b, and ↙ ↗,() by c. We will list Alice’s basis

first and then Bob’s. So, for example, (b, c) means Alice is choosing ↘ ↖,()
and Bob is choosing ↙ ↗,(). The entries in the table show whether the

measurements agree or disagree.

82  Chapter 5

We do not know the probabilities that should be assigned to the con-

figurations. There are eight possible configurations, so it might seem plau-

sible that they each occur with probability 1/8, but they perhaps are not

all equal. Our mathematical analysis will make no assumption about these

probabilities’ values. We can, however, assign definite probabilities to the

measurement directions. Both Bob and Alice are choosing each of their

three bases with equal probability, so each of the nine possible pairs of bases

occurs with probability 1/9.

Notice that each row contains at least five As, telling us that given a pair

of qubits with any configuration the probability of getting an A is at least

5/9. Since the probability of getting an A is at least 5/9 for each of the spin

configurations, we can deduce that the probability overall must be at least

5/9, no matter what proportion of time we get any one configuration.

We have now derived Bell’s result. The quantum theory model tells us

that Alice’s and Bob’s sequences will agree exactly half the time. The classi-

cal model tells us that Alice’s and Bob’s sequences will agree at least 5/9ths

of the time. It gives us a test to distinguish between the two theories.

Bell published his inequality in 1964. Sadly, this was after the death of

both Einstein and Bohr, so neither ever realized that there would be an

experimental way of deciding their debate.

Actually carrying out the experiment is tricky. John Clauser and Stuart

Freedman first performed it in 1972. It showed that the quantum mechani-

cal predictions were correct. The experimenters, however, had to make

some assumptions that could not be checked, leaving some chance that the

classical view could still be correct. The experiment has since been repeated

Measurement directions

Config. a a,() a b,() a c,() b a,() b b,() b c,() c a,() c b,() c c,()

000 A A A A A A A A A

001 A A D A A D D D A

010 A D A D A D A D A

011 A D D D A A D A A

100 A D D D A A D A A

101 A D A D A D A D A

110 A A D A A D D D A

111 A A A A A A A A A

Bell’s Inequality  83

with increasing sophistication. It has always been in agreement with quan-

tum mechanics, and there seems little doubt now that the classical model

is wrong.

There were three potential problems with the earliest experiments. The

first was that Alice and Bob were too close to one another. The second was

that their measurements were missing too many entangled particles. The

third was that Alice’s and Bob’s choices of measurement direction were not

really random. If the experimenters are close to one another, it is theoreti-

cally possible that the measurements could be influenced by some other

mechanism. For example, as soon as the first measurement is made, a pho-

ton travels to influence the second measurement. To ensure that this is not

occurring, the measurers need to be far enough apart to know that the time

interval between their measurements is less than the time it takes for a pho-

ton to travel between them. To counter this loophole, entangled photons

are used. Unlike entangled electrons, entangled photons can travel long

distances without interacting with the outside world.

Unfortunately, this property of not interacting readily with the outside

world makes it difficult to measure them. In experiments involving pho-

tons, many of the entangled photons escape measurement, so it is theo-

retically possible that there is some selection bias going on—the results

are reflecting the properties of a nonrepresentative sample. To counter the

selection bias loophole, electrons have been used. But if electrons are used,

how do you get the entangled electrons far enough apart before you mea-

sure them?

This is exactly the problem that the team from Delft, which we men-

tioned in the previous chapter, solved using electrons trapped in diamonds

that are entangled with photons. Their experiment seems to have closed

both loopholes simultaneously.*

The problem of randomness is harder. If the Copenhagen interpretation

is correct, producing streams of random numbers is easy. If we are question-

ing this interpretation as it relates to randomness, however, we need to test

strings of numbers and see if they are random. There are many tests to look

for underlying patterns among the numbers. These tests, unfortunately, can

prove only a negative. If a string fails a test, then we know the string is not

random. Passing the test is a good sign, but it is not proof that the string is

*  The paper “Loophole-free Bell inequality violation using electron spins separated

by 1.3 kilometres” by B. Hensen et al. was published in Nature in 2015.

84  Chapter 5

random. All we can say is that no quantum mechanical generated string has

failed a test for randomness.

Clever ways have been chosen to ensure that the direction Alice chooses

to measure is not correlated to Bob’s. But again, it is not possible to rule

out the possibility that some hidden variable theory determines what, we

think, are uncorrelated random outcomes.

Most people consider that Einstein has been proved wrong, but that his

theory made sense. Bell, in particular, believed that the classical theory was

the better of the two theories up until he saw the results of the experiments,

saying, “This is so rational that I think that when Einstein saw that, and

the others refused to see it, he was the rational man. The other people,

although history has justified them, were burying their heads in the sand.

… So for me, it is a pity that Einstein’s idea doesn’t work. The reasonable

thing just doesn’t work.”**

I am in total agreement with Bell. When you first meet these ideas, it

seems to me that Einstein’s view is the natural one to take. I am surprised

that Bohr was so convinced that it was wrong. Bell’s result, often called

Bell’s theorem, resulted in Bell’s being nominated for the Nobel Prize in

physics. Many people think that if he hadn’t died of a stroke at the rela-

tively young age of sixty-one he would have received it. Interestingly, there

is a street in Belfast named after Bell’s theorem—this might be the only

theorem that you can enter into Google Maps and get a location.

We have to abandon the standard assumption of local reality. When par-

ticles are entangled, but perhaps far apart, we should not think of spin as a

local property associated with each of the particles separately; it is a global

property that has to be considered in terms of the pair of particles.

Before we leave our discussion of quantum mechanics, we should also

look at one other unusual aspect of the theory.

Measurement

In our description of quantum mechanics we describe a state vector as

jumping to a basis vector when we make a measurement. Everything is

deterministic until we make a measurement, and then it jumps to one of

the basis vectors. The probabilities for jumping to each of the basis vectors

**  J. Bernstein, Quantum Profiles (Princeton: Princeton University Press, 1991), 84.

Bell’s Inequality  85

are known exactly, but they are still probabilities. The theory changes from

being deterministic to probabilistic when we make a measurement.

In the general theory of quantum mechanics it is the solution of the

Schrödinger’s wave equation that collapses when a measurement is made.

Erwin Schrödinger, of the eponymous equation, was very uncomfortable

with this idea of waves collapsing to states given by probabilities.

A significant problem is that what we mean by measurement is not

defined. It is not part of quantum mechanics. Measurements cause jumps,

but what do we mean by measurement? Sometimes the word observation

has been used instead of measurement, and this has led some people to talk

about consciousness causing the jump, but this seems unlikely. The stan-

dard explanation is that the measurement involves an interaction with a

macroscopic device. The measuring device is large enough that it can be

described using classical physics and does not have to be incorporated into

the quantum theoretical analysis—that whenever we make a measurement

we have to interact physically with the object being measured, and this

interaction causes the jump. But this explanation is not entirely satisfac-

tory. It seems a plausible description, but it lacks mathematical precision.

Various interpretations of quantum mechanics have been proposed,

each trying to eliminate something that seems problematic in the Copen-

hagen interpretation.

The many-worlds interpretation deals with the measurement problem by

saying that it only appears that the state vector jumps to one of the possi-

bilities, but in fact there are different universes and each of the possibilities

is an actual occurrence in one of the many universes. The version of you in

this universe sees one outcome, but there are other versions of you in other

universes that see the other outcomes.

Bohmian mechanics tackles the introduction of probabilities. It is a

deterministic theory in which particles behave like classical particles, but

there is also a new entity called the pilot wave that gives the nonlocality

properties.

There are many ardent believers in each of these theories. For exam-

ple, David Deutsch, whom we will meet later, believes in the many-worlds

view. But at the moment there are no scientific tests that have shown that

one set of beliefs is preferable to another, unlike the local hidden-variable

theory that the Bell’s inequality experiments have shown to be wrong. All

of the interpretations are consistent with our mathematical theory. Each

86  Chapter 5

interpretation is a way of trying to explain how the mathematical theory

relates to reality. Perhaps, at some point there will be an insightful genius

like Bell who can show that the different interpretations lead to different

conclusions that can be experimentally differentiated, and that experi-

ments will then give us some reason for choosing one interpretation over

another. But at this point, most physicists subscribe to the Copenhagen

interpretation. There is no convincing reason not to use this interpretation,

so we shall use it without further comment from now on.

The final topic of this chapter shows that Bell’s theorem is not just of

academic interest. It can actually be used to give a secure way of sharing a

key to be used in cryptography.

The Ekert Protocol for Quantum Key Distribution

In 1991, Artur Ekert proposed a method based on entangled qubits used in

Bell’s test. There are many slight variations. We will present a version that

uses our presentation of Bell’s result.

Alice and Bob receive a stream of qubits. For each pair, Alice receives one

and Bob receives the other. The spin states are entangled. They are always

in the state
1
2

1
2

↑ ↑ + ↓ ↓ .

If Alice and Bob measure their respective qubit using the same orthonor-

mal basis, then we saw that they will get either 0 or 1with equal probability,

but they will both get exactly the same answer.

We could imagine a protocol where Alice and Bob both decide to mea-

sure their qubits in the standard basis every time. They will end up with

exactly the same string of bits, and the string will be a random sequence of

0s and 1s, which seems like a great way of both choosing and communicat-

ing a key. The problem, of course, is that it is not the least bit secure. If Eve

is intercepting Bob’s qubits, she can measure them in the standard basis

and then send the resulting unentangled qubit on to Bob. The result is that

Alice, Bob, and Eve all end up with identical strings of bits.

The solution is to measure the qubits using a random choice of three

bases—exactly as we did with the Bell test. As in the BB84 protocol, for

each measurement Alice and Bob write down both the result and the basis

that they chose. After they have made 3n measurements, they compare

the sequences of bases that they chose. This can be done on an insecure

Bell’s Inequality  87

channel—they are only revealing the basis, not the result. They will agree

on approximately n of them. In each place they have chosen the same basis

they will have made the same measurement. They will either both have 0,

or both have 1. This gives them a string of n 0s and 1s. This will be their key

if Eve is not listening in.

They now test for Eve. If Eve is eavesdropping, she will have to make

measurements. Whenever she does, the entangled states become unen-

tangled. Alice and Bob look at the strings of 0s and 1s that come from the

times when they chose different bases. This gives two strings of 0s and 1s

with length about 2n. From the Bell inequality calculation, they know that

if their states are entangled, in each place they should only agree 1/4 of the

time. However, if Eve is measuring one of the qubits the proportion of times

they agree changes. For example, if Eve measures a qubit before Alice and

Bob have made their measurements, it is fairly straightforward to check all

the possibilities to show that the proportion of times that Alice and Bob

will agree increases to 3/8. This gives them a test for the presence of Eve.

They calculate the proportion of agreement. If it is 1/4, they can conclude

that nobody has interfered and use the key.

The Ekert protocol has the useful feature that the process generates the

key. No digits need to be generated and stored beforehand, thus eliminat-

ing one of the main security threats to encryption. This protocol has been

successfully carried out in the lab using entangled photons.

Having concluded the introduction to quantum concepts, the next topic

to introduce is classical computation. This is the topic of the next chapter.

6  Classical Logic, Gates, and Circuits
Chapter 6
Classical Logic, Gates, and Circuits

© Massachusetts Institute of TechnologyAll Rights Reserved

In this chapter we briefly study classical computation, presenting the ideas

in roughly chronological order. We start with boolean functions and logic,

first introduced by George Boole in the late nineteenth century. In the

1930s, Claude Shannon studied boolean algebra and realized that boolean

functions could be described using electrical switches. The electrical com-

ponents that correspond to boolean functions are called logic gates. Com-

posing boolean functions becomes the study of circuits involving these

gates. We will begin by studying boolean functions in terms of logic; then

we will show how to translate everything into circuits and gates. The mate-

rial, up to this point, is now considered standard and is contained in every

introductory computer science text. But after this we look at some ideas

that are usually not part of the standard introduction.

In the 1970s, the Nobel Prize–winning physicist Richard Feynman

became interested in computing and, for a few years in the early 1980s,

he gave a course on computation at the California Institute of Technology.

These lectures were eventually written up as Feynman Lectures on Computa-

tion. Feynman’s interest in computation was partly due to his interaction

with Edward Fredkin and Fredkin’s idiosyncratic views of physics and com-

putation. Fredkin believes that the universe is a computer, and that since

the laws of physics are reversible we ought to study reversible computa-

tion and reversible gates. But even though Fredkin’s overarching thesis is

not widely accepted in the physics community, he is recognized for hav-

ing some brilliant and unconventional ideas. One of these is the billiard

ball computer. Feynman’s book includes a discussion of reversible gates and

shows how any computation can be performed by bouncing balls off one

another.

90  Chapter 6

We take Feynman’s approach. It turns out that reversible gates are exactly

what we need for quantum computing. The billiard ball computer led Feyn-

man to think of particles interacting instead of balls. It was the inspiration

for his work on quantum computing, but we include it here mainly because

of its sheer simplicity and ingenuity.

Logic

In the late nineteenth century George Boole realized that certain parts of

logic could be treated algebraically—that there were laws of logic that could

be expressed in terms of algebra. We adopt the now standard way of intro-

ducing boolean logic by using truth tables for the three basic operations

not, and, and or.

Negation

If a statement is true, then its negation is false, and conversely, if a state-

ment is false, then its negation is true. For example, the statement 2 + 2

= 4 is true, and its negation 2 + 2 ≠ 4 is false. Instead of giving concrete

examples of statements, we often let the symbols P, Q, and R stand in for

them. So, for example, 2 + 2 = 4 might be represented by P. The symbol ¬

stands for not; if P represents the statement 2 + 2 = 4, then ¬P stands for 2

+ 2 ≠ 4. We can then summarize the basic properties of negation using our

symbols: If P is true, then ¬P is false. If P is false, then ¬P is true.

To make things even more concise we can use the symbols T and F to

denote true and false respectively. We can then define the properties using

a table.

P ¬P

T F

F T

And

The symbol for and is ∧ . If we have two statements P and Q, we can com-

bine them to form P Q∧ . The statementP Q∧ is true if and only if both of

the component statements P and Q are true. We define and by the following

table, where the first two columns give the possibilities for the truth-values

of P and Q and the third column gives us the corresponding truth-value of

P Q∧ .

Classical Logic, Gates, and Circuits  91

Or

The symbol for or is ∨ and is defined by the following table.

P Q P Q∧

T T T

T F F

F T F

F F F

P Q P Q∨

T T T

T F T

F T T

F F F

P Q P Q⊕

T T F

T F T

F T T

F F F

Notice that P Q∨ is true if both P and Q are true, so P Q∨ is true if either

one of P or Q is true and also if both are true. This is the or that is used

in mathematics and is sometimes called the inclusive or. The exclusive or is

defined to be true if either one, but not both, of P and Q is true. It is false if

they are both false, but is also false if they are both true. The exclusive or is

denoted by ⊕ . Its truth table is below.

(Later we will see why the symbol for the exclusive or resembles a plus sign—

it corresponds to addition modulo two.)

Boolean Algebra

We start by showing how to construct the truth table for any binary expres-

sion. For concreteness we will construct the truth table of ¬ ¬ ∧ ¬()P Q . This

is done in several steps. First we write down the table for the possibilities

for P and Q.

92  Chapter 6

Then we attach columns for ¬P and ¬Q , writing in the appropriate truth-

values in each case.

P Q

T T

T F

F T

F F

P Q ¬P ¬Q

T T F F

T F F T

F T T F

F F T T

P Q ¬P ¬Q
	
¬ ∧ ¬P Q

T T F F F

T F F T F

F T T F F

F F T T T

P Q ¬P ¬Q
	
¬ ∧ ¬P Q

	
¬ ¬ ∧ ¬()P Q

T T F F F T

T F F T F T

F T T F F T

F F T T T F

Next we add a column for ¬ ∧ ¬P Q . This is true only in the case when both

¬P and ¬Q are true.

Finally, we get to the column associated with ¬ ¬ ∧ ¬()P Q . This statement

is true if and only if ¬ ∧ ¬P Q is false.

Omitting the intermediate columns corresponding to the intermediate

steps gives the following table.

Classical Logic, Gates, and Circuits  93

We look for entries of T in the third column. The first occurs when P has

value T and Q has value F. An expression that gives us a value of T only for

those particular truth-values of P and Q is P Q∧ ¬ .

The next value of T in the third column occurs when P has value F and

Q has value T. An expression that gives us a value of T only for those par-

ticular truth-values of P and Q is ¬ ∧P Q .

These are the only places where T occurs in the third column. To get an

expression equivalent to the one that we want, we now join all the expres-

sions we have generated so far using ∨ s, so

P Q P Q P Q⊕ ≡ ∧ ¬() ∨ ¬ ∧().

P Q ¬ ¬ ∧ ¬()P Q

T T T

T F T

F T T

F F F

P Q P Q⊕

T T F

T F T

F T T

F F F

Logical Equivalence

Notice that the truth-values in the table for ¬ ¬ ∧ ¬()P Q are identical to the

truth-values in the table for P Q∨ . They have exactly the same truth-values

in every case. We say that the statements P Q∨ and ¬ ¬ ∧ ¬()P Q are logically

equivalent. We write:

P Q P Q∨ ≡ ¬ ¬ ∧ ¬()

This means that we need never use or . Every case where or occurs can be

replaced using expressions involving ¬ and ∧.

What about the exclusive or, which we write with ⊕? Can we replace this

by an expression involving only the use of ¬ and ∧? We can, and we will

now show how to do this.

We consider the truth table for ⊕.

94  Chapter 6

We know

P Q P Q∨ ≡ ¬ ¬ ∧ ¬().

Using this to replace ∨ gives

P Q P Q P Q⊕ ≡ ¬ ¬ ∧ ¬() ∧ ¬ ¬ ∧()()().

Again, this means that we that we need never use ⊕. Every case where ⊕
occurs can be replaced using expressions involving ¬ and ∧. The method

we have just used for replacing ⊕ using ¬ and ∧ works quite generally.

Functional Completeness

We can think of the logical operators that we have introduced as functions.

For example, ∧ is a function that has two inputs, P and Q, and gives us one

output; ¬ has one input and one output.

We could invent our own function that has a number of inputs that take

on values of T and F and in each of the cases gives us a value of either T or F;

such a function is called a boolean function. To make things more concrete,

we will invent a function that has three inputs that we will label P, Q, and

R. We call our function f P Q R, ,(). To define our function, we have to com-

plete the third column in the following table.

P Q R f P Q R, ,()
T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

There are eight values that need to be filled in. There are two choices for

each value, giving us a total of 28 possible functions. We will show that no

matter how we choose our function, we can find an equivalent expression

that uses only the functions ¬ and ∧.

We use exactly the same method that we used to show that

Classical Logic, Gates, and Circuits  95

The first T occurs when P and R have values T, and Q has value F. A function

that gives us a value of T for only this set of truth-values is P Q R∧ ¬ ∧ . The

next T occurs when P and R have values F and Q has value T. A function

that gives us a value of T for only this set of truth-values is ¬ ∧ ∧ ¬P Q R. The

final T occurs when P, Q, and R all have value F. A function that gives us a

value of T for only this set of truth-values is ¬ ∧ ¬ ∧ ¬P Q R.

An expression that takes on value T in just these three cases is

P Q R P Q R P Q R∧ ¬ ∧() ∨ ¬ ∧ ∧ ¬() ∨ ¬ ∧ ¬ ∧ ¬(),

so

f P Q R P Q R P Q R P Q R, ,() ≡ ∧ ¬ ∧() ∨ ¬ ∧ ∧ ¬() ∨ ¬ ∧ ¬ ∧ ¬().

The final step is to replace ∨ using the fact that

P Q P Q∨ ≡ ¬ ¬ ∧ ¬().

Replacing the first occurrence gives

f P Q R P Q R P Q R P Q R, ,() ≡ ¬ ¬ ∧ ¬ ∧() ∧ ¬ ¬ ∧ ∧ ¬()() ∨ ¬ ∧ ¬ ∧ ¬().

Replacing the second occurrence tells us that f P Q R, ,() is logically equiva-

lent to

¬ ¬ ¬ ¬ ∧ ¬ ∧() ∧ ¬ ¬ ∧ ∧ ¬()()[] ∧ ¬ ¬ ∧ ¬ ∧ ¬[]()P Q R P Q R P Q R .

P Q R f P Q R, ,()
T T T F

T T F F

T F T T

T F F F

F T T F

F T F T

F F T F

F F F T

P Q P Q P Q⊕ ≡ ∧ ¬() ∨ ¬ ∧().

We begin by looking for values of T in the last column. To help make things

easier to follow we will use the specific function given by the following

table, but the method we use will work for any boolean function.

96  Chapter 6

This method works in general. If f is a function that is defined by a truth

table, then f is logically equivalent to some expression that involves only

the functions ¬ and ∧. Since we can generate any boolean function what-

soever using just these two functions, we say that ¬ ∧{ }, is a functionally

complete set of boolean operators.

It might seem surprising that we can generate any function defined by

a truth table using just ¬ and ∧, but incredibly, we can do even better.

There is a binary operator called Nand, and any boolean function is logi-

cally equivalent to some expression that only uses the Nand operator.

Nand

Nand is a portmanteau word formed from combining not and and. It is

denoted by ↑. It can be defined by

P Q P Q↑ = ¬ ∧(),

or, equivalently, by the following truth table:

P Q P Q↑
T T F

T F T

F T T

F F T

P P P∧ ¬ ∧()P P

T T F

F F T

We know that ¬ ∧{ }, is a functionally complete set of operators, so to show

that Nand by itself is functionally complete—that any boolean operator can

be rewritten as an equivalent function that just uses Nand — we just need

to show that both and and not have equivalent expressions that are written

solely in terms of Nand.

Consider the following truth table, which considers just the statement P,

then P P∧ and finally ¬ ∧()P P .

Notice that the final column has the same truth-values as ¬P , telling us

¬ ∧() ≡ ¬P P P ,

Classical Logic, Gates, and Circuits  97

but ¬ ∧()P P is just P P↑ , so

P P P↑ ≡ ¬ .

This shows that we can replace all occurrences of not with Nand. We now

turn our attention to and.

Observe that

P Q P Q∧ ≡ ¬¬ ∧().

Now, ¬ ∧() ≡ ↑P Q P Q , so

P Q P Q∧ ≡ ¬ ↑().

We can now replace not using the preceding identity to obtain

P Q P Q P Q∧ ≡ ↑() ↑ ↑().

Henry M. Sheffer, in 1913, first published the fact that Nand by itself is

functionally complete. Charles Sanders Peirce also knew this fact in the late

nineteenth century, but like much of his highly original work it remained

unpublished until much later. (Sheffer used the symbol | for Nand. Many

authors use, or have used, Sheffer’s symbol instead of ↑. It is called the Shef-

fer stroke.)

Boolean variables take on one of two values. We have been using T and

F for these, but we can use any two symbols. In particular, we can use 0 and

1. The advantage of replacing T and F by 0 and 1 is that we can then think

of boolean functions as operating on bits. This is what we will do from

now on.

There are two choices for how we could do the substitution. The conven-

tion is that 0 replaces F and 1 replaces T, and this what we shall use. Notice

that conventionally we list T before F, but 0 before 1. Consequently, truth

tables written in terms of 0 and 1 reverse the order of the rows when written

in terms of T and F. This shouldn’t cause any confusion, but just to hammer

home the point, here are the two tables for P Q∨ .

P Q P Q∨ P Q P Q∨

T T T 0 0 0

T F T 0 1 1

F T T 1 0 1

F F F 1 1 1

98  Chapter 6

Gates

Various people realized that if logic could be expressed in terms of algebra,

then machines could be designed to perform logical operations, but the

most influential by far was Claude Shannon, who showed that all of bool-

ean algebra could be performed using electrical switches. This is one of the

fundamental ideas underlying the circuit design of all modern computers.

Remarkably, he did this while still a master’s student at MIT.

At discrete time intervals either a pulse of electricity is transmitted or it is

not. If at the appropriate time interval we receive a pulse of electricity, then

we think of this as representing the truth-value T or, equivalently, bit value

1. If at the appropriate time interval we do not receive a pulse of electricity,

then we think of this as representing the truth-value F or, equivalently, bit

value 0.

The combinations of switches that correspond to our binary operators

are called gates. The common gates have special diagrams associated to

them. We look at some of these.

The NOT Gate

Figure 6.1 shows the symbol for the NOT gate. This can be thought of as a

wire entering from the left and leaving from the right. If we input 1, we get

output 0. If we input 0, we get output 1.

The AND Gate

Figure 6.2 shows the symbol for the AND gate. Again, it is read from left to

right. It has two inputs that can be either 0 or 1 and one output. Figure 6.3

shows the four cases.

Figure 6.1
The NOT gate.

Figure 6.2
The AND gate.

Classical Logic, Gates, and Circuits  99

The OR Gate

Figure 6.4 shows the symbol for the OR gate, along with the inputs and

output for the four cases.

The NAND Gate

Figure 6.5 shows the symbol for the NAND gate, along with the inputs and

output for the four cases.

Circuits

We can connect the gates together to form a circuit. Despite the name,

there is nothing circular about circuits. They are linear and are read from

left to right. We input our bits into the wires on the left and read the output

from the wires on the right. We will look at examples that correspond to the

boolean functions that we looked at earlier.

We start with the boolean expression ¬ ¬ ∧ ¬()P Q . The corresponding

circuit can be given using gates. This is shown in figure 6.6, where the

wires entering and leaving the gates have been labeled with the appropriate

expressions. Recall that P Q P Q∨ ≡ ¬ ¬ ∧ ¬(), so the circuit in figure 6.6 is

equivalent to the OR gate.

1
1 1 1

0 0 0
1 0 0

0 0

Figure 6.3
The four possibilities for inputs to the AND gate.

1
1 1 1

0 1 0
1 1 0

0 0

Figure 6.4
The OR gate.

1
1 0 1

0 1 0
1 1 0

0 1

Figure 6.5
The NAND gate.

100  Chapter 6

Our next example is P P↑ . We want to enter the same value, P, into both

the inputs of our NAND gate. Splitting the input signal into two by con-

necting an additional wire achieves this. This process of splitting a signal

into multiple copies is called fan-out. Figure 6.7 shows the circuit.

We know that P P P↑ ≡ ¬ , so the circuit in figure 6.7 is equivalent to the

NOT gate.

Our final example is the binary expression P Q P Q↑() ↑ ↑(). To get

the two copies of P Q↑ , we again need to use fan-out. Figure 6.8 shows

the circuit.

We know that P Q P Q P Q∧ ≡ ↑() ↑ ↑(), so the circuit in figure 6.8 is

equivalent to the AND gate.

NAND Is a Universal Gate

Earlier we showed that the boolean function Nand was functionally com-

plete. In this section we repeat the argument using gates.

P

Q

(P Q)
P

Q

P Q

Figure 6.6
A circuit for ¬ ¬ ∧ ¬()P Q .

P
P

P

P P

Figure 6.7
A circuit for P P↑ .

P
Q

P Q
(P Q) (P Q)

Figure 6.8
A circuit for P Q P Q↑() ↑ ↑().

Classical Logic, Gates, and Circuits  101

Our argument started by showing that we could replace any occurrence

of or by using the identity

P Q P Q∨ ≡ ¬ ¬ ∧ ¬().

The corresponding circuit, shown in figure 6.6, shows that we need never

use the OR gate.

The argument continued by showing that any boolean function could

be constructed using combinations of not and and. Consequently, we can

construct a circuit that computes any boolean function using just NOT and

AND gates.

Then we showed that both not and and could be generated by Nand

showing that Nand by itself was functionally complete. The analogous

statement is true for the NAND gate. You can implement any boolean func-

tion using a circuit that just uses NAND gates. Instead of using the term

functionally complete, the standard term for gates is universal, so NAND is a

universal gate. But let’s look at this in a little more detail.

The circuits in figures 6.7 and 6.8 show how to get rid of NOT and AND

gates, replacing them with NAND gates. But notice that we also have to

use fan-out. This operation takes one bit of information and outputs two

output bits that are identical to the input bit. It might seem obvious that

we can do this; it just requires connecting one piece of wire to another, but

we will see later that we cannot perform this operation when it comes to

quantum bits.

Gates and Computation

Gates are the fundamental building blocks of the modern computer. In

addition to performing logical operations we can use gates to compute. We

won’t show how this can be done. (The interested reader should see the

wonderful book Code by Charles Petzold, where he starts with switches and

shows how to construct a computer.) But we will give an example to help

illustrate how the ideas underlying addition can be implemented.

Recall the exclusive or, denoted ⊕ . It’s defined by:

0 0 0⊕ = , 0 1 1⊕ = , 1 0 1⊕ = , 1 1 0⊕ = .

even + even = even, even + odd = odd, odd + even = odd, odd + odd = even.

This can be compared to adding odd and even whole numbers. We know:

102  Chapter 6

This addition of “oddness” and “evenness” is often called addition mod-

ulo 2. If we let 0 stand for “even” and 1 stand for “odd,” addition modulo

2 is given by ⊕ . This is why the symbol contains a plus sign. (It is often

easier to calculate with ⊕ thinking of addition, rather than use the

exclusive or.)

The exclusive or gate is called XOR and is denoted by the symbol shown

in figure 6.9.

We will use this gate to construct what is called a half-adder. This is a

circuit that adds two binary digits. To understand what is going on we will

compare it to a decimal half-adder. If we have two digits that sum to less

than ten, then we just add them. So, for example, 2 + 4 = 6, 3 + 5 = 8.

If the digits sum to more than ten, however, we write down the appro-

priate digit, but we must remember to carry one for the next step in the

computation. So, for example, 7 + 5 = 2, and we have a carry of 1.

A binary half-adder does the analogous computation. We can construct

it using an XOR gate and an AND gate. The XOR gate computes the digit

part, and the AND gate computes the carry.

Figure 6.9
The XOR gate.

0 + 0 = 0, with carry = 0;

0 + 1 = 1, with carry = 0;

1 + 0 = 1, with carry = 0;

1 + 1 = 0, with carry = 1.

A circuit that performs this is shown in figure 6.10. (In this picture the

crossings of the wires that have dots indicate fan-out operations. The

crossings without dots mean that the wires cross one another, but are not

connected.)

The reason that this is called a half-adder, and not just an adder, is that

it doesn’t take into account that we might have a carry coming in from the

step before. We look at an example where we are adding standard decimal

numbers. Suppose that the calculation is to add the following four-digit

numbers, where the stars represent unknown digits.

Classical Logic, Gates, and Circuits  103

To add the 6 and 5 we might get a digit of 1 and a carry of 1, but it is pos-

sible that we might have a carry of 1 from the first step of the calculation,

in which case, the digit would be 2 and the carry 1. A full adder takes into

account the possibility of an incoming carry from the step before.

We won’t draw the circuit for a full binary adder, but it can be done.

Since all of our gates can be replaced with NAND gates, we can build an

adder just using NAND gates and fan-outs. Indeed, we can build a whole

computer just using these two components.

Memory

We have shown how to use gates for logic and indicated how we can use

gates to do arithmetic, but to build a computer we also need to be able to

store data. This can also be done using gates. It will take us too far afield

to describe in detail how to do this, but the key idea is to build a flip-flop.

These can be built out of gates using feedback. The outputs of the gates are

fed back into inputs. An example using two NAND gates is shown in figure

6.11. We won’t describe how to implement these, but we will end by com-

menting that once we start using feedback it is important to get the timing

of inputs and outputs exactly right. This is where the clock comes in, send-

ing pulses of electricity at constant time intervals.

Reversible Computation

Now that we have given some idea of how a computer can be built from

classical gates, we begin our study of reversible gates.

Input
Input Digit

Carry

Figure 6.10
A half-adder circuit.

**6*

+ **5*

104  Chapter 6

Gates can be considered as boolean functions. For example, the AND

gate takes two boolean inputs and gives a boolean output. Often the easiest

way of representing this is through a table. (This table is exactly the same as

what we have been calling a truth table.)

Figure 6.11
A flip-flop using two NAND gates.

AND

Input Output

0 0 0

0 1 0

1 0 0

1 1 1

Half-adder

Input Output

digit carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

We can also represent the half-adder using a table. This time there are two

inputs and two outputs.

In this section we will look at reversible gates. These correspond to invert-

ible functions. Given an output, can we determine what the input was? If

we can in every case, the function is invertible—the gate is reversible.

Classical Logic, Gates, and Circuits  105

Looking at AND, if we get an output of 1, then we know that the input

values must have been both 1, but if we get an output value of 0 there

are three pairs of input values that have this output, and if we are not

given any other information, we have no way of knowing which one of

the three possibilities was actually input. Consequently, AND is not a

reversible gate.

The half-adder is also not reversible. There are two pairs of input values

that give a digit of 1 and a carry of 0. In both of these cases we have two bits

of input, but are not getting two bits of output. We have lost some informa-

tion doing the computation.

The study of reversible gates and reversible computation began by look-

ing at the thermodynamics of computation. Shannon defined entropy for

information. Entropy is also defined in thermodynamics. In fact, this is

where Shannon got the idea. How closely are these two entropies related

to one another? Can some of the theory of computation be expressed in

terms of thermodynamics? In particular, can one talk about the minimum

energy required performing a calculation? John von Neumann conjectured

that when information was lost energy is expended—it dissipates as heat.

Rolf Landauer proved the result and gave the minimum possible amount

of energy to erase one bit of information. This amount of energy is called

the Landauer limit.

If the computation is reversible, however, no information is lost and

theoretically it can be performed with no energy loss.

We will look at three reversible gates: the CNOT, Toffoli, and Fredkin

gates.

Controlled Not Gate

The controlled not gate or CNOT gate takes two inputs and gives two outputs.

The first input is called the control bit. If it is 0, then it has no effect on the

second bit. If the control bit is 1, it acts like the NOT gate on the second bit.

The control bit is the first input bit and denoted by x. This bit is not changed

and becomes the first output. The second output equals the second input if

the control bit is 0, but it is flipped when the control bit is 1. This function

is given by f x y x x y, , , , .() = ⊕()or equivalently by the following table

106  Chapter 6

Notice that this operation is invertible. Given any pair of output values,

there is exactly one pair of input values that corresponds to it.

We can build a circuit that performs this operation using a fan-out and

an XOR gate. This is shown in figure 6.12.

This, however, is not the picture that is most commonly used. The usual

picture is the simplified version shown in figure 6.13.

The CNOT gate is not just invertible, but it also has the nice property

that it is its own inverse. This means that if you put two CNOT gates in

series, where the output of the first gate becomes the input of the second

gate, the output from the second gate is identical to the input to the first

gate. The second gate undoes what the first gate does. To see this, we know

that applying the CNOT gate once is given by

f x y x x y, , .() = ⊕()

CNOT

Input Output

x y x x y⊕

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

x

y x y

x

Figure 6.12
A circuit for CNOT.

x x

y x y

Figure 6.13
Usual representation of CNOT gate.

Classical Logic, Gates, and Circuits  107

Using this output as the input of another CNOT gate gives

f x x y x x x y x y, , ,⊕() = ⊕ ⊕() = () .

Here we have used the facts that x x⊕ = 0 and 0 ⊕ =y y.

We started with the input x y,() and the output after going through the

gate twice is x y,(), back where we started.

The Toffoli Gate

The Toffoli gate, invented by Tommaso Toffoli, has three inputs and three

outputs. The first two inputs are control bits. They flip the third bit if they

are both 1, otherwise the third bit remains the same. Since this gate is like

the CNOT gate, but has two control bits, it is sometimes called a CCNOT gate.

The function describing what this gate does is: T x y z x y x y z, , , , .() = ∧() ⊕()
This can also be given in tabular form.

Toffoli gate

Input Output

x y z x y x y z∧() ⊕)

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

The standard diagram for this gate comes from the diagram of the CNOT

gate (figure 6.14).

We can see from the table that the Toffoli gate is invertible—each triple

of output values corresponds to exactly one triple of input values. Like the

CNOT gate, this gate also has the property that it is its own inverse.

We know that T x y z x y x y z, , , , .() = ∧() ⊕() Now, using the output as the

new input and applying T again gives:

T x y x y z x y x y x y z x y z, , , , , , .∧() ⊕() = ∧() ⊕ ∧() ⊕() = ()

Here we use the facts that x y x y∧() ⊕ ∧() = 0 and 0 ⊕ =z z.

108  Chapter 6

The Toffoli gate is also universal. Recall that we can construct any bool-

ean circuit using just NAND gates and fan-outs. To show that the Toffoli

gate is universal, it is enough if we can show how to use it to compute both

of these.

The NAND gate is described by f x y x y,() = ¬ ∧() , so we want a way of

inputting x and y and getting an output of ¬ ∧()x y . Since we are using the

Toffoli gate, we will be inputting three values and getting an output of three

values. Now ¬ ∧()x y is logically equivalent to x y∧() ⊕1. We can choose

the third input value to always be 1, and we can ignore extra output values.

We use

T x y x y x y x y x y, , , , , ,1 1() = ∧() ⊕() = ¬ ∧()()

to show that we can emulate the NAND gate by inputting x and y and read-

ing off the third entry of the output.

We can use a similar idea for fan-out. We want to input just one value

x and receive two outputs that are both x. Again, the Toffoli gate has three

inputs and three outputs. We can choose the two other inputs apart from x

to be fixed and as long as we get xs for two of the outputs we can ignore the

third. This can be done by

T x x x, , , , .1 0 1() = ()

Consequently, any boolean circuit can be constructed using just Toffoli

gates.

These constructions illustrate something that often arises when we use

reversible gates. The number of inputs must equal the number of outputs,

but often we want to compute things where the number of inputs and out-

puts differ. We can always do this by adding extra bits, often called ancilla

bits, to the inputs, or by ignoring bits that are output. Output bits that are

x x

y y

z (x y) z

Figure 6.14
Toffoli gate.

Classical Logic, Gates, and Circuits  109

ignored are sometimes called garbage bits. In the example where we showed

that fan-out could be done using the Toffoli gate we had T x x x, , , , .1 0 1() = ()

The 1 and 0 in the input are ancilla bits, and the 1 in the output is a

garbage bit.

The Fredkin Gate

The Fredkin gate also has three inputs and three outputs. The first input is

a control bit. If it is 0, the second and third inputs are unchanged. If the

control bit is 1, it swaps the second and third inputs—the second output

is the third input and the third output is the second input. It is defined by

F y z y z F y z z y0 0 1 1, , , , , , , , , .() = () () = ()

Equivalently, it is given by the following table.

It is easily seen from the table that the Fredkin gate is invertible and that,

like both the CNOT and Toffoli gates, it is its own inverse. The table also has

the property that the number of 1s for each input is equal to the number

of 1s in the corresponding output. We will make use of this fact later when

we construct a Fredkin gate using billiard balls. (When constructing billiard

ball gates, you want them to have the property that the number of balls

entering is equal to the number of balls leaving.) Figure 6.15 shows the

diagram for this gate.

Notice that F 0 0 1 0 0 1, , , ,() = () and F 1 0 1 1 1 0, , , , ,() = () so for both possible

values of x,

F x x x x, , , ,0 1() = ¬(),

Fredkin gate

Input Output

x y z x

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

110  Chapter 6

telling us that we can use the Fredkin gate for both fan-out and negation.

For fan-out, we think of ¬ x as a garbage bit. For negation, we think of both

the xs as garbage bits.

If we put z equal to 0 we obtain:

×

×

Figure 6.15
The Fredkin gate.

F(0,0,0) = (0,0,0), F(0,1,0)=(0,1,0), F(1,0,0) = (1,0,0), F(1,1,0) = (1,0,1).

We can write this more succinctly as

F x y x x y x y, , , ,0() = ¬ ∧ ∧().

This tells us that we can use the Fredkin gate to construct the AND gate (0

is an ancilla bit, and both x and ¬ ∧x y are garbage bits).

Since any boolean circuit can be constructed using just NOT and AND

gates along with fan-out, we can construct any boolean circuit using just

Fredkin gates. Like the Toffoli gate, the Fredkin gate is universal.

We defined the Fredkin gate by

F y z y z F y z z y0 0 1 1, , , , , , , , , ,() = () () = ()

but we will give another equivalent definition.

This gate outputs three numbers. The first number output is always equal

to the first input x. The second number will be 1 if either x = 0 and y = 1 or if

x = 1 and z = 1, which we can express as ¬ ∧() ∨ ∧()x y x z . The third output

will be 1 if either x = 0 and z = 1 or if x = 1 and y = 1, which we can express

as ¬ ∧() ∨ ∧()x z x y . Consequently, we can define this gate by

F x y z x x y x z x z x y, , , ,() = ¬ ∧() ∨ ∧() ¬ ∧() ∨ ∧()() .

This looks somewhat intimidating and seems much more complicated

than just remembering that if x = 0, then both y and z are unchanged; if

x = 1, then y and z get switched. However, there is one place where this

Classical Logic, Gates, and Circuits  111

complicated formula is useful, and that is in the next section, when we

show how to construct this gate using billiard balls.

Billiard Ball Computing

We haven’t discussed how to actually build gates. They can all be built

from switches and wires with electric potential or its absence representing

the bits 1 and 0. Fredkin showed that they could also be built using billiard

balls that bounce off one another and strategically placed mirrors. A mirror

is just a solid wall that the ball bounces off. (They are called mirrors because

the angle of incidence is equal to the angle of reflection.) Billiard ball gates

are theoretical devices; it is assumed that all collisions are totally elastic—

that no energy is lost. An example of a simple gate, called the switch gate,

is shown in figure 6.16. In these pictures the solid lines represent walls; the

grid lines are drawn to help keep track of the centers of the balls.

In the picture on the left a ball has just entered via Input 1. Since we

haven’t entered a ball into Input 2, the ball just rolls unhindered and exits

via Output 1. The picture on the right shows the analogous situation when

one ball enters via Input 2 and we don’t send a ball through Input 1: It rolls

unhindered out of Output 2A.

There are two other possibilities for sending ball through the two input

slots. Unsurprisingly, if we don’t enter any balls, then no balls exit. The

final and most complicated case is when balls are sent through both inputs.

The assumption is that the balls have the same size, mass, speed and are

entered simultaneously. Figure 6.17 indicates what happens.

In 2

In 1

Out 1

Out 2A

Out 2B

In 2

In 1

Out 1

Out 2A

Out 2B

Figure 6.16
Billiard ball switch gate.

112  Chapter 6

First the balls collide with one another, then they both bounce off the

diagonal walls (or mirrors), then they collide again. Finally, they exit. One

leaves via Output 1 and the other by Output 2 B. (The paths of the centers

of the balls are indicated by the bold arrows.)

We can denote the presence of a ball by 1 and the absence by 0, and then

we can summarize what the gate does in a table.

In 2

In 1

Out 1

Out 2A

Out 2B

Figure 6.17
Two balls entering switch gate.

Switch gate

Input Output

1 2 1 2A 2B

0 0 0 0 0

0 1 0 1 0

1 0 1 0 0

1 1 1 0 1

x y x ¬ ∧x y x y∧

0 0 0 0 0

0 1 0 1 0

1 0 1 0 0

1 1 1 0 1

We can construct a table with the same values using the statements x, y,

¬ ∧x y , and x y∧ .

Classical Logic, Gates, and Circuits  113

This enables us to depict the switch as a black box with the inputs and out-

puts appropriately labeled, as is depicted in figure 6.18.

This picture tells us where balls enter and leave the gate. If a ball enters

via x, a ball must leave via x. If a ball enters via y, a ball will leave via the

¬ ∧x y exit if there is no ball entering via x and will leave via the x y∧ exit

if there is also a ball entering via x. At this point you might be slightly wor-

ried by the fact that in the case when two balls enter, the balls get switched

because the ball that exits via x is the ball that entered via y and the ball

that exits from x y∧ is the one that entered from x. But this is not a prob-

lem. We regard the balls as being indistinguishable—we just keep track of

where there are balls, not where the balls originally came from.

We can also reverse the gate as is depicted in figure 6.19. We have to be

slightly careful interpreting this. If a ball enters via ¬ ∧x y , then there won’t

be a ball entering via x, and so the ball sails directly across. If a ball enters

x

x

x y

x y

y

Figure 6.18
Switch gate with inputs and outputs labeled.

x

x

x y

x y

y (x y) (x y)

Figure 6.19
Switch gate with inputs and outputs interchanged.

114  Chapter 6

via x y∧ , then there will be a ball entering via x, and consequently they

will collide. One ball exits through the top of the gate and one exits via the

output on the left. This means that a ball will exit through the left output if

either ¬ ∧x y or x y∧ , so this exit can be labeled ¬ ∧() ∨ ∧()x y x y . However,

¬ ∧() ∨ ∧()x y x y is logically equivalent to y, which means that reversing the

gate just reverses the arrows but leaves all the labels the same.

We are now in a position to construct a Fredkin gate. Recall that

F x y z x x y x z x z x y, , , ,() = ¬ ∧() ∨ ∧() ¬ ∧() ∨ ∧()().

We need a construction that inputs x, y and z and outputs x,

¬ ∧() ∨ ∧()x y x z and ¬ ∧() ∨ ∧()x z x y). This can be done with four switch

gates and a lot of ingenuity. It is depicted in figure 6.20.

In this picture, the right angles in the paths are obtained by bouncing off

diagonally placed mirrors. The only other interactions occur in the switch

gates. Paths crossing don’t indicate collisions; the balls pass through the

intersection points at different times. To make sure that balls don’t collide

where they shouldn’t and do collide where they should, we can always add

delays to paths by adding little detours to paths using mirrors. For example,

x

x

x
x

x

y

z
x z

x z

x y

x y

(x y) (x z) (x z) (x y)

Figure 6.20
Fredkin gate constructed from switch gates.

Classical Logic, Gates, and Circuits  115

we can add a little delay by changing a straight-line path to one like the one

depicted in figure 6.21.

By putting mirrors in the appropriate places and adding delays, we can

construct the gate so that the outputs are lined up with the inputs and

when balls enter at the same time they leave at the same time. (This is

depicted in figure 6.22.) We can then form circuits that contain more than

one Fredkin gate.* Since the Fredkin gate is universal, it can be used to

construct any boolean circuit. Consequently, any boolean circuit can be

constructed using just billiard balls and mirrors.

Fredkin believes that the universe is a computer. He didn’t convince

Feynman of this, but the billiard ball computer did impress him. As they

both realized, any slight error in the position or velocity of a ball would

result in an error that would propagate and get amplified. Collisions are

never perfectly elastic; there is always friction and heat is lost. The billiard

ball computer is clearly just a theoretical machine, not something that can

be constructed in practice. But this machine does conjure images of atoms

bouncing off one another, and it led Feynman to consider gates based on

quantum mechanics rather than classical mechanics. We look at this idea

in the next chapter.

Figure 6.21
Delay added to straight-line path.

z

y

x

x z x y

x y x z

x

Figure 6.22
Billiard-ball Fredkin gate to be used in circuits.

*  There is a great animation showing this gate with balls entering and leaving on

the website http://www.bubblycloud.com/billiard/fredkin-from-switches.html.

http://www.bubblycloud.com/billiard/fredkin-from-switches.html

7  Quantum Gates and Circuits
Chapter 7
Quantum Gates and Circuits

© Massachusetts Institute of TechnologyAll Rights Reserved

Quantum gates and circuits are a natural extension of both classical gates

and circuits. They are also another way of thinking about the mathematics

that describes sending qubits from Alice to Bob.

I commute by train. Often the train I am on is stationary, with another

train also at a standstill just inches away from my window. One train will

move slowly. Sometimes it is impossible to tell whether it is my train or

the other one that is moving without turning to look out of the window

on the opposite side. We could be inching forward, or the train moving in

the opposite direction could be inching forward. Both scenarios fit. The

same analysis applies to Bob’s measurements. We can either think of Bob

as rotating his measuring apparatus, or we can think of Bob as keeping

his apparatus in the same direction as Alice, but somehow the qubit gets

rotated on the trip from Alice to Bob. When Alice and Bob are far apart, it

often makes sense to think of Bob’s apparatus as being rotated. But we are

going to send qubits to ourselves. We could think of our apparatus rotating

during the travel time, but it is more natural to think of the apparatus as

fixed and the qubit as being rotated. We think of the rotation as happen-

ing between the time it is sent and the time it is measured. Sending the

qubits through a quantum gate performs this rotation. Previously we said

that choosing directions to measure our qubits correspond to choosing an

orthogonal matrix. Now we think of the directions we are measuring as

being fixed and the orthogonal matrix as corresponding to a gate that the

qubits pass through. Before we look at examples, we will introduce some

new names for our basis kets.

118  Chapter 7

Qubits

Since we are going to think of our measuring device as being fixed, we need

to use only one ordered basis for both sending and receiving qubits. The

natural basis to choose is the standard one
1

0

0

1


















, . Earlier we denoted

this as ↑ ↓(), . But we also associated the first vector in the ordered basis

to the bit 0 and the second vector to 1. Now that we are solely going to use

this basis it makes sense to give our kets new names that reflect how they

relate to bits. We let 0 denote
1

0





 and 1 denote

0

1





.

In general a qubit will have the form a a0 10 1+ , where a a0
2

1
2 1+ = .

When we measure it, either the state jumps to 0 and we read 0, or the

state jumps to 1 and we read 1. The first occurs with probability a0
2, the

second with probability a1
2.

Usually we have a system with more than one qubit, which means that

we have to form tensor products. For a system with two qubits the underly-

ing ordered basis is

1

0

1

0

1

0

0

1

0

1

1

0

0

1






⊗ 











⊗ 











⊗ 








, , , 



⊗ 











0

1
.

This can be written as 0 0 0 1 1 0 1 1⊗ ⊗ ⊗ ⊗(), , , . As we noted

before, we often suppress the tensor product symbols, and so we write

the product even more succinctly as 0 0 0 1 1 0 1 1, , ,(). Finally, we

make the convention that we let ab denote a b , giving the representa-

tion 00 01 10 11, , ,() that is short and easy to read.

How does this connect to gates? This is what we will consider next. We

start by reexamining the CNOT gate.

The CNOT Gate

As we saw, the classical CNOT gate takes two input bits and gives two out-

put bits. It’s defined by the table:

Quantum Gates and Circuits  119

The table tells us what happens to the basis vectors. We then extend to lin-

ear combinations of the basis vectors in the obvious way.

CNOT r s t u r s u t00 01 10 11 00 01 10 11+ + +() = + + +

It just flips the probability amplitudes of 10 and 11 .

We keep using the diagram we used previously for the CNOT gate, but we

must be careful about how we interpret it. For classical bits, the bit entering

the top wire on the left, leaves the top wire on the right unchanged. This

CNOT

Input Output

x y x x y⊕

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

CNOT

Input Output

x Y x x y⊕

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

CNOT

Input Output

00 00

01 01

10 11

11 10

We extend this to qubits in the natural way—replacing 0 by 0 , and 1 by

1 . The table becomes:

This can be written more succinctly using our compact notation for tensor

products.

120  Chapter 7

For example, we take
1

0
1

1
2 2

+ as the top qubit and 0 for the

bottom one.

The input is
1

0
1

1 0
1

00
1

10
2 2 2 2

+



 ⊗ = + . This is sent by the

CNOT gate to
1

00
1

11
2 2

+ .

This state, as we recognize from the EPR experiment, is an entangled

state. Consequently, we cannot assign individual states to the top and bot-

tom wires on the right side. We draw the diagram in the following way.

0

0 1
2

1
2

1

00 + 111
2

1
2

is still true for qubits if the top qubit is either 0 or 1 , but it is not true for

other qubits.

The wires represent our electrons or photons. These are separate objects

and can be far apart. We will often talk about the top qubit and the bot-

tom qubit and think of them as being far apart. But, remember, if they are

entangled, a measurement on one will affect the state of the other.

This example illustrates how we will often use this gate. We can input

two unentangled qubits and use the gate to entangle them.

Quantum Gates

Notice that the CNOT gate permutes the basis vectors. Permuting the basis

vectors in an ordered orthonormal basis gives another ordered orthonormal

basis, and we know that associated with any of these bases is an orthogo-

nal matrix. Consequently, the matrix corresponding to the CNOT gate is

orthogonal. In fact, all of the reversible gates that we introduced in the last

chapter permute basis vectors. They all correspond to orthogonal matrices.

Quantum Gates and Circuits  121

This gives us the definition of quantum gates. They are just operations that

can be described by orthogonal matrices.

Just as for classical computation, we want to assemble a small collection

of simple gates that we can connect together to form circuits. We start by

looking at the simplest gates, those that act on just one qubit.

Quantum Gates Acting on One Qubit

In classical, reversible computation there are only two possible boolean

operators that act on one bit: the identity that leaves the bit unchanged,

and NOT, which flips the values of 0 and 1. For qubits there are infinitely

many possible gates!

We begin by looking at the two quantum gates that correspond to the

classical identity and that both leave the qubits 0 and 1 unchanged.

Then we will look at the two quantum gates corresponding to flipping the

qubits 0 and 1 . These four gates are named after Wolfgang Pauli and are

called the Pauli transformations.

The Gates I and Z

The gate I is just the identity matrix
1 0

0 1





.

We will see how I acts on an arbitrary qubit a a0 10 1+ .

I a a
a

a

a

a
a a0 1

0

1

0

1
0 10 1 0 1

1 0

0 1
+() = 











= 





= + .

Unsurprisingly, I acts as the identity and leaves qubits totally unchanged.

The gate Z is defined by the matrix
1 0

0 1−





.

Again, let’s see how Z acts on an arbitrary qubit a a0 10 1+ .

Z a a
a

a

a

a
a a0 1

0

1

0

1
0 10 1 0 1

1 0

0 1
+() =

−












=
−







= − .

So, Z leaves the probability amplitude of 0 unchanged, but it changes the

sign of the probability amplitude of 1 . But let’s look at what Z does a little

more carefully.

122  Chapter 7

First, we will look at how it acts on the basis vectors. We have Z 0 0() =

and Z 1 1() = − . But recall that a state vector is equivalent to that state vec-

tor multiplied by −1, so − 1 is equivalent to 1 ; consequently, Z preserves

both of the basis vectors, but it is not the identity. If we apply Z to the

qubit
1

0
1

1
2 2

+ , we obtain

1
0

1
1

2 2
− ,

and, as we showed earlier,
1

0
1

1
2 2

+ is distinguishable from, not

equivalent to,
1

0
1

1
2 2

− .

Even though the transformation Z preserves both the basis vectors,

it changes every other qubit! This operation of changing the sign of a

probability amplitude is sometimes called changing the relative phase of

the qubit.

The Gates X and Y

The gates X and Y are given by:*

They both correspond to NOT in that they interchange 0 and 1 . The gate

X just flips, while Y flips and changes the relative phase.

X = 





0 1

1 0
Y =

−






0 1

1 0
.

*  Most authors define the matrix Y to be −i times the matrix we have given. We

have chosen not to use any complex numbers. Our choice for Y simplifies things

slightly when we consider superdense coding and quantum teleportation.

The Hadamard Gate

The last and most important gate that acts on one bit is the Hadamard gate,

H. It is defined by

H =



















=
−





−

1 1

1 1
12 2

2 2
2

1 1

1 1
.

Quantum Gates and Circuits  123

We have named five quantum gates that act on just one qubit. Of course,

there are infinitely more. Any rotation will give us an orthogonal matrix,

and there are infinitely many of these, all of which can be considered as

gates.

Are There Universal Quantum Gates?

In classical computing, we found that every boolean function could be

given by a circuit that used only Fredkin gates, telling us that the Fredkin

gate is universal. We also saw that NAND, along with fan-out, was universal.

Are there universal quantum gates?

In the classical case, there are only finitely many boolean functions with

a given number of variables. There are just two boolean functions of one

variable. There are four of two variables. In general, there are 2n possible

functions with n variables. Things are very different with quantum gates.

As we have seen there are infinitely many possible gates that can act on

just one qubit. If we take a finite number of gates and connect them in a

finite number of ways, we will end up with a finite number of circuits. So,

it is just not possible to have a finite number of gates generate an infinite

number of circuits.

The short answer to the question of whether or not there is a finite set

of quantum gates that is universal is just “no.” However, even though it

is impossible to have a finite number of quantum gates that will generate

every other possible quantum circuit, people have shown there is a finite

collection of gates that can be used to approximate every possible circuit, but

H

This gate is often used to put the standard basis vectors into superpositions:

H()0
1

0 1
2

= ()+ 	 H()1
1

0 1
2

= ()−    

In diagrams, gates that act on one qubit are denoted by a square with the

appropriate letter drawn in the center. For example, the Hadamard gate act-

ing on one bit is denoted by the following.

124  Chapter 7

we will not go into this. All of the circuits that we need can be constructed

from the gates that we have introduced; five that act on just one qubit, and

one, the CNOT gate, that acts on two qubits.

No Cloning Theorem

We first came across the fan-out operation when we were looking at clas-

sical circuits. One input wire is connected to two output wires. The input

signal is split into two identical copies.

We then looked at reversible gates. For these, if you have two outputs,

then you must also have two inputs. We could get the fan-out operation by

using an ancilla bit—taking the second input always to be 0. One way of

doing this is with the CNOT gate.

CNOT 0 0 0 0() = , CNOT 1 0 1 1() = , so CNOT x x x0() = , if

x is either 0 or 1 . Unfortunately, if x is not 0 or 1 , we don’t end

up with two copies. We saw this when we input
1

0
1

1 0
2 2

+



 into

the CNOT gate. It resulted in an entangled state, not two copies of the left

qubit. We can use CNOT to copy classical bits, but not general qubits.

The term fan-out is restricted to classical computing. We use the word

cloning for the analogous idea in quantum computing. Cloning is like fan-

out, but for qubits. We want to make copies not just of classical bits but also

of qubits. We want a gate that inputs a general qubit x and a fixed second

input 0 (an ancilla bit) and outputs two copies of x . A diagram of our

desired gate follows.

The question of cloning becomes the question of whether or not the gate

G can exist. We will show that it cannot, showing that it is impossible to

clone general qubits. We do this by supposing that there is such a gate and

then showing that two contradictory consequences follow logically from

G

x x

x0

Quantum Gates and Circuits  125

this assumption. Since our argument is logically sound and contradictions

should not occur, we conclude that our initial assumption that G existed

was false. Here’s the argument.

If G exists, we know that its cloning property gives:

1.  G 0 0 0 0() = .

2.  G 1 0 1 1() = .

3.  G
1

0
1

1 0
1

0
1

1
1

0
1

1
2 2 2 2 2 2

+









 = +



 +



 .

These three statements can be restated to give:

1.  G 00 00() = .

2.  G 00 11() = .

3.  G
1

00
1

10
1

00 01 10 11
2 2 2

+



 = + + +().

The gate G, like all matrix operators, must be linear, which means that

G G G
1

00
1

10
1

00
1

10
2 2 2 2

+



 = () + ().

Replacing G 00()and G 10() using statements (1) and (2) gives

G
1

00
1

10
1

00
1

11
2 2 2 2

+



 = + .

But statement (3) says that

G
1 1 1

00 01 10 11
2

00
2

10
2

+



 = + + +().

However,

1
00

1
11

1
00 01 10 11

2 2 2
+ ≠ + + +().

So we have shown that if G exists then two things that are not equal must

be equal. This is a contradiction. The only logical conclusion is that G can-

not exist, and it is impossible to construct a gate that clones general qubits.

The argument we have given used 0 for the ancilla bit. There is nothing

special about this. Exactly the same argument can be used whatever value

is chosen for this bit.

126  Chapter 7

The inability to clone a qubit has many important consequences. We

want to be able to back up files and send copies of files to other people.

Copying is ubiquitous. Our everyday computers are based on von Neu-

mann architecture, which is heavily based on the ability to copy. When

we run a program we are always copying bits from one place to another. In

quantum computing this is not possible for general qubits. So, if program-

mable quantum computers are designed they will not be based on our cur-

rent architecture.

At first, the fact that we cannot clone qubits seems like a serious

drawback, but there are a couple of important comments that need to be

made.

Often we want to prevent copying. We want to secure our data—we

don’t want our communications to be tapped. Here, as we saw with Eve,

the fact that we cannot clone qubits can be used to our advantage, prevent-

ing unwanted copies from being made.

The second comment is so important it deserves its own section.

Quantum Computation versus Classical Computation

The qubits 0 and 1 correspond to the bits 0 and 1. If we run our quantum

CNOT gate just using the qubits 0 and 1 , and not any superpositions,

then the computation is exactly the same as running a classical CNOT gate

with 0 and 1. The same is true of the quantum version of the Fredkin gate.

Since the classical Fredkin gate is universal and the quantum Fredkin gate

using just 0 and 1 is equivalent to the classical gate, we can see that a

quantum circuit can calculate anything that can be calculated by a classical

circuit. The no-cloning property may seem worrisome, but it doesn’t restrict

us from doing classical computations in any way.

This is a deep result. It shows that if we compare classical and quantum

computation, we shouldn’t think of them as different types of computa-

tion. Quantum computation includes all of classical computation. It is the

more general form of computation. The qubit is the basic unit of computa-

tion, not the bit.

Now that we have seen some basic gates, we will start to connect them

together to form circuits.

Quantum Gates and Circuits  127

The Bell Circuit

We call the following quantum circuit the Bell circuit.

H

To see what it does, we will input the four pairs of qubits that form the

standard basis. We start with 00 0 0= . The first qubit is acted on by the

Hadamard gate’s changing it to
1

0
1

1
2 2

+ , so the system of two qubits

has state

1
0

1
1 0

1
00

1
10

2 2 2 2
+



 = +

at this stage. We now apply the CNOT gate. This flips 10 to 11 , giving the

final state
1

00
1

11
2 2

+ .

We can represent the situation by the following picture.

0

0

00 1
2

1
2

11

H

We will summarize this by

B 00
1

00
1

11
2 2

() = + .

Convince yourself that

B 01
1

01
1

10
2 2

() = + .

B 10
1

00
1

11
2 2

() = − .

B 11
1

01
1

10
2 2

() = − .

128  Chapter 7

Each of these outputs is entangled. Since the inputs form an orthonormal

basis for 4, the outputs must also form an orthonormal basis. This basis,

consisting of four entangled kets, is called the Bell basis.

Recall that the way to tell whether a square matrix A is orthogonal is

by calculating A AT , where AT is the transpose matrix obtained from A by

interchanging the rows and columns. If we get the identity matrix I, then

the matrix is orthogonal and the columns of the matrix give us an ortho-

normal basis. If we don’t get the identity, then the matrix is not orthogonal.

We have defined our gates to be orthogonal, so they all have this prop-

erty. In fact, all the gates we have introduced in this chapter, with the one

exception of the Pauli matrix Y, also have the property that when you take

the transpose matrix you end up with exactly the same matrix you started

with.** Consequently, for all of these gates, AA I= . This tells us that if we

apply the gate twice in a row we end up with an output that is unchanged

from the input. The second time we apply the gate, it undoes what we did

when we applied it the first time.

We will see a couple of uses of the Bell circuit in a moment, but first we

make use of the fact that the Hadamard gate and the CNOT gate are their

own inverses. Consider the following circuit:

H H

If we send a pair of qubits through the circuit, the first thing that hap-

pens is that the Hadamard gate is applied, and then we apply the CNOT

gate. This action is immediately undone by the second application of the

CNOT gate. Finally, the second application of the Hadamard gate undoes

the action done by the initial Hadamard gate. The result is that the cir-

cuit doesn’t change anything. The qubits output are identical to the qubits

that entered. The second half of the circuit reverses what the first half

does.

This means that the following circuit, which we will call the reverse Bell

circuit, reverses the action of the Bell circuit.

**  Matrices with the property that A AT = are called symmetric. They are symmetric

with respect to the main diagonal.

Quantum Gates and Circuits  129

H

In particular, we know what happens if we input vectors from the Bell basis.

It is going to give us vectors in the standard basis.

If we input
1

00
1

11
2 2

+ , it will output 00 .

If we input
1

01
1

10
2 2

+ , it will output 01 .

If we input
1

00
1

11
2 2

− , it will output 10 .

If we input
1

01
1

10
2 2

− , it will output 11 .

Now that we have the basic properties of the Bell circuit, we will see how it

can be applied to do some very interesting things. We look at superdense

coding and quantum teleportation.

Superdense Coding

The initial setup for both superdense coding and quantum teleportation

is the same. Two electrons have the entangled spin state
1

00
1

11
2 2

+ .

One of the electrons is given to Alice and the other to Bob. They then travel

far apart, both being careful not to make any measurement of their respec-

tive electron, preserving the entangled state.

In superdense coding, Alice wants to send Bob two classical bits of infor-

mation, that is, one out of the following possibilities: 00, 01, 10, 11. She is

going to do this by sending Bob one qubit—her electron. We will outline

the exact procedure in a moment, but first we will analyze the problem to

see what we want to do.

Initially, it seems as though the solution should be easy. Alice is going

to send Bob a qubit a a0 10 1+ . There are infinitely many choices for the

qubit, anything that satisfies a a0
2

1
2 1+ = will do. Surely, it must be easy to

construct a way of transmitting two bits of information—one out of four

130  Chapter 7

possibilities—if you are allowed to send something that can be one of an

infinite number of things. The problem is, of course, that Bob can never

know what the qubit is. He can get information only by measuring. He will

measure the spin in the standard basis and get either 0 or 1 . If Alice sends

him a a0 10 1+ , he will get 0 with probability a0
2 and 1 with probability

a1
2. If he gets 0 , he knows nothing about a0 , except for the fact that it is

nonzero. Bob can get at most one bit of information from each qubit. In

order to get two bits of information he will have to extract one bit from the

particle that Alice is sending him, but he must also extract one bit from the

particle in his possession.

Alice and Bob initially have one electron each. Eventually Bob is going

to have both electrons and is going to measure their spins. Bob will have

some quantum circuit with two wires exiting. If Alice wants to send 00,

we need to arrange things so that just before Bob starts measuring, the top

electron is in state 0 and the bottom electron is in state 0 , that is, the

pair of electrons is in the unentangled state 00 just before Bob measures

their spins. Similarly, if Alice wants to send 01, we want the pair of elec-

trons to be in the state 01 just before Bob makes his measurements. The

final state should be 10 if Alice wants to send 10, and 11 if Alice wants to

send 11.

The final observation is that Bob must do the same thing to every pair

of electrons that he receives. He cannot do different things depending on

what Alice is trying to send, because he doesn’t know what she is trying to

send. That’s the whole point!

The idea behind the method is that Alice will act on her electron in one

of four ways. Each way will result in the state of the qubits being one of the

basis vectors in the Bell basis. Bob will then run the pair of qubits through

the reverse Bell circuit to get the correct unentangled state.

Alice has four quantum circuits, one for each of the two-bit choices. Each

circuit uses Pauli gates. The circuits are given below.

I

Circuit for 00

X

Circuit for 01

Z

Circuit for 10

Y

Circuit for 11

Quantum Gates and Circuits  131

We will look at what happens to the qubits in each case. Initially, Alice’s

and Bob’s qubits are entangled. They are in state
1

00
1

11
2 2

+ which we

will write as

1
0 0

1
1 1

2 2
⊗ + ⊗ .

When Alice sends her electron through the appropriate circuit, her kets

change. Note that Alice’s circuits do not affect Bob’s electron in any way.

We will do the calculation in each case.

If Alice wants to send 00, then she does nothing. The resultant state for

the qubits remains as state
1

00
1

11
2 2

+ .

If Alice wants to send 01, she applies X. This interchanges her 0 and

her 1 . The new state will be
1

1 0
1

0 1
2 2

⊗ + ⊗ , which we can write

as
1

10
1

01
2 2

+ .

If Alice wants to send 10, she applies Z. This interchanges leaves 0 alone

but changes her 1 to − 1 . The new state will be
1

0 0
1

1 1
2 2

⊗ + ⊗−()

which we can write as
1

00
1

11
2 2

− .

If Alice wants to send 11, she applies Y. The qubits end in the entangled

state
1

10
1

01
2 2

− .

Notice that these resultant states are exactly what she wants. Each is a

distinct Bell basis vector. Now she sends Bob her electron. When Bob has

her electron, he can use a circuit that inputs both the qubit that Alice has

sent and the one that has always been in his possession. He uses the reverse

Bell circuit.

If Alice is sending 00, when Bob receives the qubits they will be in state

1
00

1
11

2 2
+ . He sends this through the reverse Bell circuit. This changes

the state to 00 . This is unentangled. The top bit is 0 as is the bottom bit.

Bob now measures the qubits. He gets 00.

If Alice is sending 01, when Bob receives the qubits they will be in

state
1

10
1

01
2 2

+ He sends this through the reverse Bell circuit. This

132  Chapter 7

changes the state to 01 .This is unentangled. The top bit is 0 and the

bottom bit is 1 . Bob now measures the qubits. He gets 01. The other cases

are similar. In each case Bob ends up with the two bits that Alice wants to

send to him.

Quantum Teleportation

As in superdense coding, Alice and Bob are far apart. They each have one

electron. The electrons share the entangled state
1

00
1

11
2 2

+ . Alice

also has another electron. It is in state a b0 1+ . Alice has no idea what

the probability amplitudes a and b are, but she and Bob want to change

Bob’s electron so that it has state a b0 1+ . They want to teleport the state

of Alice’s electron to Bob’s. To do this, we will see that Alice needs to send

Bob two classical bits, but notice that there are infinitely many possibili-

ties for the initial state of her electron. It’s impressive that we can send

one of an infinite number of possibilities using only two classical bits. It is

also interesting that Alice starts with a qubit and Bob ends up with it, but

neither of them can ever know exactly what it is. To learn about it, they

have to make a measurement. When they measure, they just get either

0 or 1 .

We can deduce a few things about how the process will work. Bob is

going to end up with an electron in the unentangled state a b0 1+ .

At the start, Bob and Alice’s electrons share an entangled state. To disen-

tangle the state someone has to make a measurement. Clearly, it cannot

be Bob. If Bob makes a measurement he will end up with an electron in

state of either 0 or 1 , not the required a b0 1+ , so we know Alice will

be making a measurement. We also have to get the third electron’s state

involved. Alice will have to do something to entangle the state of this

electron with the state of her other electron, which is currently entangled

with Bob’s. The obvious way of doing this is to send the two qubits that

she controls through a CNOT gate. That will be the first step. The sec-

ond step will be to apply the Hadamard gate to the top qubit. So, in fact,

Alice is going to put the two qubits that she controls through a reverse

Bell circuit. The situation is depicted as follows, where Alice’s qubits are

shown above Bob’s qubit. The second and third rows depict the entangled

qubits.

Quantum Gates and Circuits  133

H
Alice’s qubits

Bob’s qubit
00 1

2
1
2

11

a b0 1

We have three qubits, the initial state that describes the three electrons is

a b0 1
1

00
1

11
2 2

+() ⊗ +



 ,

which we can write as

a a b b

2 2 2 2
000 011 100 111+ + + .

Alice is going to act on her qubits, so we write the state emphasizing these.

a a b b

2 2 2 2
00 0 01 1 10 0 11 1⊗ + ⊗ + ⊗ + ⊗ .

Alice is going to apply the reverse Bell circuit. We will analyze this in two

steps, first by applying the CNOT gate to the first two qubits and then the

Hadamard gate to the top bit. Applying the CNOT gate gives:

a a b b

2 2 2 2
00 0 01 1 11 0 10 1⊗ + ⊗ + ⊗ + ⊗ .

Alice now is going to act on the first qubit, so we write the state emphasiz-

ing this.

a a b b

2 2 2 2
0 0 0 0 1 1 1 1 0 1 0 1⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ .

We now apply the Hadamard gate to the first qubit. This changes 0 to

1
0

1
1

2 2
+ and 1 to

1
0

1
1

2 2
− .

This results in the state

a a a

a b b

b b

2 2 2

2 2 2

2 2

0 0 0 1 0 0 0 1 1

1 1 1 0 1 0 1 1 0

0 0 1

⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗

+ −

+ − 11 0 1⊗ ⊗

134  Chapter 7

This can be slightly simplified to give

1
00 0 1

1
01 1 0

1
10 0 1

1
11 1 0

2 2

2 2

⊗ +() + ⊗ +()

+ ⊗ −() + ⊗ −()

a b a b

a b a b
.

Alice now measures her two electrons in the standard basis. She will get one

of 00 , 01 , 10 , 11 , each with probability 1/4.

If she gets 00 , Bob’s qubit will jump to state a b0 1+ .

If she gets 01 , Bob’s qubit will jump to state a b1 0+ .

If she gets 10 , Bob’s qubit will jump to state a b0 1− .

If she gets 11 , Bob’s qubit will jump to state a b1 0− .

Alice and Bob want Bob’s qubit to be in the state a b0 1+ . It is almost

there, but not quite. To sort things out, Alice has to let Bob know which

of the four possible situations he is in. She sends Bob two classical bits of

information, 00, 01, 10, or 11, corresponding to the results of her measure-

ments, to let him know. These bits of information can be sent in any way,

by text, for example.

If Bob receives 00, he knows that his qubit is in the correct form and so

does nothing.

If Bob receives 01, he knows that his qubit is a b1 0+ . He applies the

gate X to it.

If Bob receives 10, he knows that his qubit is a b0 1− . He applies the

gate Z to it.

If Bob receives 11, he knows that his qubit is a b1 0− . He applies

the gate Y to it.

In every case Bob’s qubit ends in state a b0 1+ , the original state of the

qubit that Alice wanted to teleport.

It is important to note that there is only one qubit in state a b0 1+ at

any point during the process. Initially, Alice has it. At the end Bob has it,

but as the no cloning theorem tells us, we can’t copy, so only one of them

can have it at a time.

It is also interesting to observe that when Alice sends her qubits through

her circuit Bob’s qubit instantaneously jumps to one of the four states. He

has to wait for Alice to send him the two classical bits before he can deter-

mine which of the four qubits correspond to Alice’s original qubit. It is the

fact that the two bits have to be sent by some conventional transportation

method that prevents instantaneous transmission of information.

Quantum Gates and Circuits  135

Quantum teleportation and superdense coding are sometimes described

as being inverse operations. For superdense coding, Alice sends Bob one

qubit to convey two classical bits of information. For quantum teleporta-

tion, Alice sends Bob two classical bits of information to teleport one qubit.

For superdense coding, Alice encodes using the Pauli transformations, and

Bob decodes using the reverse Bell circuit. For quantum teleportation, Alice

encodes using the reverse Bell circuit, and Bob decodes using the Pauli

transformations.

Quantum teleportation is actually being performed, usually using entan-

gled photons rather than entangled electrons, where it can be done over

substantial distances. As I write this, it has been announced that a Chinese

team has teleported a qubit from Earth to a satellite in low Earth orbit. These

experiments are often mentioned on news broadcasts, mainly because of

the word “teleportation,” which conjures up images of Star Trek. Unfortu-

nately, quantum teleportation is not something that is readily explained in

a brief sound bite, and though many people have heard the term, not many

understand exactly what it is that is being teleported.

Quantum teleportation gives a way of transporting a qubit from one

place to another without actually transporting the particle that represents

the qubit. It is used in various ways to correct errors. This is extremely

important for quantum computations. Qubits have a tendency to interact

with the environment and get corrupted. We will not study error correction

in detail but will only look at a simple example.

Error Correction

I was a student before the advent of CDs. We listened to vinyl records. To

play a record we went through an elaborate ritual. First, the record was

gently slid from its sleeve, care being taken to hold it by its edges and not

get any fingerprints on the surface. Then the record was placed on the turn-

table. The next step was to clean it of any dust. This often involved an

antistatic spray and a special cleaning brush. Finally you lined up the stylus

and carefully lowered it to the record.

Even with all these precautions, there were often clicks and pops caused

by unseen dust or some minute imperfection. If you accidently scratched it,

you would get a pop thirty three times per minute, which made the music

unlistenable. Then CDs came. Gone were the pops. You could even scratch

the surface and it still played perfectly. It seemed incredible.

136  Chapter 7

Vinyl records have no error correction built in. If you damage them,

you cannot recover the original sound. CDs, on the other hand, incorpo-

rate error correction. If there is some small imperfection, the digital error-

correcting code can often calculate what has gone wrong and correct it.

Encoding digital information involves two essential ideas. The first is to

eliminate redundancy to compress the information as much as possible—to

make the message as short as possible. A good example of this is making

a ZIP file of a document. (Some people don’t like CDs because they think

the music has been compressed too much, losing the warmth you get from

vinyl.) The second important idea is to add some redundancy back in, but

to make it useful redundancy. You want to add in some additional informa-

tion that will help correct errors.

Nowadays, practically all transmissions of digital information use some

form of error-correcting code. There are so many ways that a message can

be slightly corrupted, and given a slightly corrupted message, you want to

be able to correct it.

Error correction is essential for transmissions involving qubits. We are

using photons and electrons to encode them. These particles can interact

with the rest of the universe and unwanted interactions may change the

states of some qubits.

In this section we will look at the most basic classical error-correcting

code and then show how it can be modified for sending qubits.

The Repetition Code

A simple error-correcting code is just to repeat the symbol that we want to

send. The simplest case is to repeat it three times. If Alice wants to send 0,

she sends 000. If she wants to send 1, she sends 111. If Bob keeps getting

sequences of three 0s and three 1s, he assumes that all is well. If he receives

something else, say 101, he knows that an error has occurred; the string

should have been 000 or 111. If the string that Alice sent was 000, then

two errors must have occurred. If the string was 111, then only one error

has occurred. If errors are fairly unlikely, it is more probable that one error,

rather than two errors, have occurred, so Bob assumes that the least number

of errors have occurred and consequently replaces 101 with 111.

There are eight possibilities of three-bit strings that Bob could receive.

Four of them are 000, 001, 010, and 100. Bob decodes all of these as 000. The

other four three-bit strings are 111, 110, 101, and 011. Bob decodes these as

Quantum Gates and Circuits  137

111. If the chance of error is very small, then this repetition code corrects

many errors and reduces the overall error rate. This is fairly straightforward,

but we will analyze what Bob does in a way that generalizes for qubits. The

problem with qubits is that to read them, we have to measure them, and

that can make them jump to a new state. We need a new way of determin-

ing what Bob should do. He is going to perform parity tests.

Now, suppose Bob receives the three bits b b b0 1 2. We will do some compu-

tations to show which, if any, of the bits should be changed. Bob computes

b b0 1⊕ and b b0 2⊕ .

The first sum checks the parity of the first two bits—that is, it checks

whether they are the same digit or not. The second sum performs a parity

check on the first and third digits.

If all three bits equal 0, or all equal 1, then he will get 0 for both sums.

If not all of the bits are equal, then two will be equal and the third will dif-

fer. It will be this third symbol that needs to be flipped from 0 to 1, or from

1 to 0.

If b b b0 1 2= ≠ , then b b0 1 0⊕ = and b b0 2 1⊕ = .

If b b b0 2 1= ≠ , then b b0 1 1⊕ = and b b0 2 0⊕ = .

If b b b0 1 2≠ = , then b b0 1 1⊕ = and b b0 2 1⊕ = .

This means that Bob can look at the pair of bits b b0 1⊕ and b b0 2⊕ .

If he gets 00 then there is nothing to correct, so he does nothing.

If he gets 01, he flips b2 .

If he gets 10, he flips b1.

If he gets 11, he flips b0 .

We look at how these error-correcting ideas can be modified for qubits.

But before we do we make one important observation. It might seem trivial,

but it is what makes the quantum bit-flip correction code work.

Suppose Bob receives a string and there is an error in the first bit. This

means that he has received either 011 or 100. After Bob does the parity

tests, he will get 11 for both strings and will know that there is an error in

the first bit. The key observation is that the parity tests tell us where the

error is. They do not tell us whether it is a 0 that needs to be flipped to a 1,

or a 1 that needs to be flipped to a 0.

Quantum Bit-Flip Correction

Alice wants to send the qubit a b0 1+ to Bob. There are various types

of errors that can occur, but we will restrict our attention to bits getting

flipped. In this case, a b0 1+ gets changed to a b1 0+ .

138  Chapter 7

Alice would like to send three copies of her qubit. This, of course, is not

possible. The no cloning theorem tells us that she cannot make copies. But

she can perform what is essentially a classical fan-out and replace 0 with

000 and 1 with 111 . This is done with two CNOT gates. This is shown

in the circuit below.

She starts with three qubits, the one she wants to encode and two ancilla

bits that are both 0 , so the initial state is a b a b0 1 0 0 0 0 0 1 0 0+() = + .

a b a b0 1 0 0 0 0 0 1 0 0+() = + . The first CNOT gate changes it to a b0 0 0 1 1 0+ . The sec-

ond gives us the required state a b0 0 0 1 1 1+ .

a b0 1

a b000 1110

0

Alice then sends the three qubits to Bob. But the channel is noisy, and

there is the possibility of a qubit being flipped. Bob might receive the cor-

rect qubits a b000 111+ , or he might receive one of the following incor-

rect versions, a b100 011+ , a b010 101+ or a b001 110+ , which

correspond to the error occurring in the first, second, and third qubit,

respectively. He wants both to detect the error and to correct it. But notice

that he cannot make any measurements on this entangled state. If he does,

the state immediately becomes unentangled and he just gets three qubits

that are some combination of 0 s and 1 s—the values of a and b are lost,

with no way of recovering them.

It is amazing that Bob can determine which bit is flipped, correct it, and

yet never make a measurement on the three qubits that Alice sent him! But

he can. He uses the parity check idea that we used for classical bits.

He adds an additional two qubits in which to perform the parity checks.

The circuit is given below. It uses four CNOT gates. The two on the fourth

wire are used to do the b b0 1⊕ parity calculation; the two on the fifth wire

do the b b0 2⊕ calculation. The standard first reaction on seeing this circuit

is to assume that we end up with five qubits that are hopelessly entangled.

But I’ve drawn the picture that shows that the bottom two qubits are not

entangled with the top three. Can that really be the case?

Quantum Gates and Circuits  139

0

0

Received qubitsReceived qubits

Parity qubits

Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+ The key observation

is that if there is an error, then there will be an error in both c c c0 1 2 and

d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-

ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth

wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+() = + .

The two CNOT gates attached to the fourth wire perform the parity check

on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of

the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +()

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +()

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.

A similar argument applies to the fifth qubit. It is not entangled with the

others. It is 0 if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1 if c c d d0 1 0 1 0⊕ = ⊕ = .

Since the bottom two qubits are not entangled with the top three, Bob

can make measurements on the bottom two qubits, and it will leave the top

three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.

If he gets 01, he flips the third qubit using by installing an X gate on the

third wire.

140  Chapter 7

If he gets 10, he flips the second qubit using by installing an X gate on

the second wire.

If he gets 11, he flips the first qubit using by installing an X gate on the

first wire.

The result is that the bit-flip error is corrected and the qubits are now

back in the state that Alice sent.

In this chapter we introduced the idea of quantum gates and circuits.

We have seen some surprising things we can do with just a few quantum

gates. We have also seen that quantum computation includes all of classical

computation. This doesn’t mean that we will be using quantum computers

to perform classical computations, but it does tell us that quantum compu-

tation is the more fundamental form of computation.

The next topic that we look at concerns whether we can use quantum

circuits to perform calculations faster than can be done with classical cir-

cuits. How do we measure the speed of a computation? Are quantum com-

puters always faster than classical ones? These are some of the questions we

look at in the next chapter.

8  Quantum Algorithms
Chapter 8
Quantum Algorithms

© Massachusetts Institute of TechnologyAll Rights Reserved

Popular descriptions of quantum algorithms describe them as being much

faster than regular algorithms. This speedup, it is explained, comes from

being able to put the input into a superposition of all possible inputs and

then performing the algorithm on the superposition. Consequently, instead

of running the algorithm on just one input, as you do classically, you can

run the algorithm using “quantum parallelism” on all possible inputs at the

same time. These descriptions often end at this point. But this leaves many

unanswered questions. We seem to end up with many possible answers all

superimposed on one another. If we make a measurement, won’t we get

just one of these answers at random? There are far more likely to be wrong

answers than right answers, so aren’t we more likely to end up with a wrong

answer than with the right answer?

Clearly, there has to be more to quantum algorithms than just putting

everything into a superposition of states. The real art of constructing these

algorithms is being able to manipulate these superpositions so that when

we make measurements we get a useful answer. In this chapter, we will

look at three quantum algorithms and see how they tackle this problem.

We will see that not every algorithm is susceptible to a quantum speedup.

Quantum algorithms are not classical algorithms that have been sped up.

Instead, they involve quantum ideas to see the problem in a new light; the

algorithms work not by the use of brute force, but by ingenious ways of

exploiting underlying patterns that can be seen from only the quantum

viewpoint.

We will describe three algorithms in detail. All three are ingenious

exploitations of underlying mathematical patterns. The level of difficulty

increases as we move through the algorithms. Some mathematics books

use a star to denote a difficult section and a double star to denote a very

142  Chapter 8

difficult section. The Deutsch-Jozsa algorithm probably deserves a star, and

Simon’s algorithm a double star.

At the end of the chapter, we will talk a little about the properties that

questions must have in order for a quantum algorithm to solve them faster

than a classical one, and why they seem so hard! But first we must describe

how the speed of algorithms is measured.

The Complexity Classes P and NP

Imagine that you are given the following problems. You are told that you

are not allowed to use a calculator or computer but have to work them out

using paper and pencil.

•	 Find two whole numbers bigger than 1 whose product is equal to 35.
•	 Find two whole numbers bigger than 1 whose product is equal to 187.
•	 Find two whole numbers bigger than 1 whose product is equal to 2,407.
•	 Find two whole numbers bigger than 1 whose product is equal to 88,631.

You won’t have much difficulty doing the first question, but each subse-

quent question is harder and will take more steps and consequently more

time to solve. Before we analyze this in more detail, consider another four

problems.

•	 Multiply 7 by 5 and check that it equals 35.
•	 Multiply 11 by 17 and check that it equals 187.
•	 Multiply 29 by 83 and check that it equals 2407.
•	 Multiply 337 by 263 and check that it equals 88,631.

These questions are undoubtedly easier than the first series. Again each

subsequent question takes more time to solve than the previous one, but

the amount of time is growing more slowly. Even the fourth question takes

less than a minute to solve by hand.

We will denote the number of digits of the input number by n, so in the

first set of questions we start with n = 2 and go up to n = 5.

We will let T n() denote the time, or equivalently the number of steps,

to solve a question of input length n. Complexity looks at how the size of

T n() grows as n grows. In particular, we ask if we can find some positive

numbers k and p such that T n knp() ≤ for every value of n. If we can, we

say that the underlying problem can be solved in polynomial time. If, on

the other hand, we can find positive number k and a number c > 1, such

Quantum Algorithms  143

that T n kcn() > for every value of n, we say that the problem requires expo-

nential time. Recall the basic fact concerning polynomial versus exponen-

tial growth: Given enough time, something with exponential growth will

grow much faster than something with polynomial growth. In computer

science, questions that can be solved in polynomial time are considered

tractable, but those with exponential growth are not. Problems that can

be solved in polynomial time are regarded as easy; those that require expo-

nential time are hard. In practice, it turns out that most polynomial time

problems involve polynomials with small degree, so even if we don’t have

the computational power to solve a problem with a large value of n at the

moment, we should have it in a few years. On the other hand, with an

exponential time problem, once the size has increased beyond what we

can currently tackle, increasing the size of n even slightly more produces

a problem that becomes much harder and is unlikely to be solvable in the

foreseeable future.

Let’s look at our two sets of problems. The second set involves multiply-

ing two numbers together, but this is easy to do. As n increases it does take

more time, but it can be shown that this is a polynomial time problem.

What about the first set of questions? If you tried tackling them, you will

probably believe that the amount of time needed is exponential in n and

not polynomial in n, but is this the case? Everybody thinks so, but, on the

other hand, nobody has found a proof.

In 1991, RSA Laboratories posted a challenge. It listed large numbers,

each of which was the product of two primes. The challenge was to factor

them. They went from being about 100 decimal digits long to 600 digits.

You were of course allowed to use computers! There were prizes for the

first person to factor them. The 100 digit numbers were factored relatively

quickly, but the numbers with 300 or more digits still haven’t been factored.

If a problem can be solved in polynomial time we say it belongs to the

complexity class P. So the problem that consists of multiplying two num-

bers together belongs to P. Suppose that instead of solving the problem,

someone gives you the answer and you just have to check that the answer

is correct. If this process of checking that an answer is correct takes polyno-

mial time, then we say the problem belongs to complexity class NP.* The

*  NP comes from nondeterministic polynomial, which in turn refers to certain types of

Turing machines that are called nondeterministic Turing machines.

144  Chapter 8

problem of factoring a large number into the product of two primes belongs

to NP.

Clearly, checking that an answer is correct is easier than actually find-

ing the answer, so every problem that is in P is also in NP, but what about

the converse question. Does every NP problem belong to P? Is it true that

every question whose answer can be checked in polynomial time can also

be solved in polynomial time? You are probably saying to yourself, “Of

course not!” Most people would agree that it seems extremely unlikely,

but nobody has managed to prove that P is not equal to NP. The prob-

lem of factoring a large number into the product of two primes belongs

to NP, and we don’t think it belongs to P, but nobody has been able to

prove it.

The problem of whether NP is equal to P is one of the most important

in computer science. In 2000, the Clay Mathematics Institute listed seven

“Millennium Prize Problems,” each with a prize of a million dollars. The P

versus NP problem is one of the seven.

Are Quantum Algorithms Faster Than Classical Ones?

Most quantum computer scientists believe that P is not equal to NP. They

also think that there are problems that are in NP but not P, which a quan-

tum computer can solve in polynomial time. This means that there are

problems that a quantum computer can solve in polynomial time that a

classical computer cannot. To prove this, however, involves the first step

of showing that some problem belongs to NP but not to P, and as we have

seen, nobody knows how to do this. So, how can we compare the speed

of quantum algorithms to classical algorithms? There are two ways: one

theoretical, the other practical. The theoretical way is to invent a new way

of measuring complexity that makes it easier to construct proofs. The prac-

tical way is to construct quantum algorithms for solving important real-

world problems in polynomial time that we believe, but have been unable

to prove, do not belong to P.

An example of the second approach is Shor’s algorithm for factoring the

product of two primes. Peter Shor constructed a quantum algorithm that

works in polynomial time. We believe, but have been unable to prove, that

a classical algorithm cannot do this in polynomial time. Why is that impor-

tant? Well, as we shall see our Internet security depends on this. That said,

Quantum Algorithms  145

in the rest of this chapter we will take the first approach—defining a new

way of calculating complexity.

Query Complexity

All of the algorithms that we are going to look at in this chapter concern

evaluating functions. The Deutsch and Deutsch-Jozsa algorithms consider

functions that belong to two classes. We are given a function at random,

and we have to determine which of the two classes the function belongs

to. Simon’s algorithm concerns periodic functions of a special type. Again

we are given one of these functions at random, and we have to determine

the period.

When we run these algorithms we have to evaluate the functions. The

query complexity counts the number of times that we have to evaluate the

function to get our answer. The function is sometimes called a black box

or an oracle. Instead of saying that we are evaluating the function, we say

that we are querying the black box or the oracle. The point of this is that

we don’t have to worry about how to write an algorithm that emulates the

function, so we don’t have to calculate the number of steps that function

takes to evaluate the input. We just keep track of the number of questions.

This is much simpler. To illustrate, we begin with the most elementary

example.

Deutsch’s Algorithm

David Deutsch is one of the founders of quantum computing. In 1985,

he published a landmark paper that described quantum Turing machines

and quantum computation.** This paper also includes the following

algorithm—the first to show that a quantum algorithm could be faster than

a classical one.

The problem concerns functions of just one variable. The input can be

either 0 or 1. The output also just takes the values of 0 or 1. There are four

of these functions that we will denote f0 , f1, f2 , and f3 :

The function f0 sends both inputs to 0; i.e., f0 0 0() = and f0 1 0() = .

The function f1 sends 0 to 0 and 1 to 1; i.e., f1 0 0() = and f1 1 1() = .

**  “Quantum theory, the Church-Turing principle and the universal quantum com-

puter,” Proceedings of the Royal Society A 400 (1818): 97–117.

146  Chapter 8

The function f2 sends 0 to 1 and 1 to 0; i.e., f2 0 1() = and f2 1 0() = .

The function f3 sends both inputs to 1; i.e., f3 0 1() = and f3 1 1() = .

The functions f0 and f3 are called constant functions. The output is the

same value for both inputs—the output is constant. A function is called

balanced if it sends half its inputs to 0 and the other half to 1. Both f1and

f2 are balanced.

The question that Deutsch posed is this: Given one of these four func-

tions at random, how many function evaluations do we have to make to

determine whether the function is constant or balanced? It is important to

understand what we are asking. We are not interested in which of the four

functions we have, but solely in whether the given function is constant

or not.

The classical analysis is as follows. We can evaluate our given function at

either 0 or 1. Supposing that we choose to evaluate it by plugging in 0, then

there are two possible outcomes—either we get 0 or we get 1. If we get 0, all

we know is f 0 0() = . The function could be either f0 or f1. Since one is con-

stant and the other is balanced, we are forced to evaluate our function again

to decide between them. Classically, to answer the question we have to plug

both 0 and 1 into the function. We need to make two function evaluations.

We now look at the quantum version of the question. First, we construct

gates that correspond to the four functions. The following picture depicts

the gates, where i can take on the numbers 0, 1, 2, or 3.

x

y

Fi

y fi (x)

x

This says that:

If we input 0 0⊗ , it outputs 0 0⊗ ()fi .

If we input 0 1⊗ , it outputs 0 0 1⊗ () ⊕fi .

If we input 1 0⊗ , it outputs 1 1⊗ ()fi .

If we input 1 1⊗ , it outputs 1 1 1⊗ () ⊕fi .

Notice that for each i, one of fi 0() and fi 0 1() ⊕ is equal to 0 and the

other is equal to 1, and one of fi 1() and fi 1 1() ⊕ is equal to 0 and the other

Quantum Algorithms  147

is equal to 1. This means that the four outputs always give us the standard

basis elements, telling us the matrix representing our gate is orthogonal—

and so we really do have a gate.

Though we enter two bits of information and get two bits as output, the

information these gates gives for classical bits, 0 and 1 is exactly the same

as for the functions evaluated at 0 and 1. The top qubit is exactly what we

entered, so that piece of output gives us no new information. The choice

of 0 and 1 for the second input gives us the option of the second output

giving us the function evaluated on the top input ket or of the opposite

answer. If we know one of these answers, we know the other.

The quantum computing question that corresponds to the classical

question is: Given one of these four gates at random, how many times do

you have to use the gate to determine whether the underlying function fi is

constant or whether it is balanced?

If we restrict to just entering 0 and 1 into the gate, the analysis is

exactly the same as before. You have to use the gate twice. But David

Deutsch showed that if we are allowed to input qubits containing superpo-

sitions of 0 and 1 , the gate only needs to be used once. To show this, he

used the following circuit.

0

1

H H

H

Fi

The little meter symbol at the right end of the top wire means that we

are going to measure this qubit. The lack of the meter symbol on the second

wire tells us that we won’t be measuring the second output qubit. Let us see

how this circuit works.

The qubits 0 1⊗ are input. They go through the Hadamard gates,

which puts them in the state

1
2

0 1
1
2

0 1
1
2

00 01 10 11+() ⊗ −() = − + −() .

These then go through the Fi gate. The state becomes

148  Chapter 8

1
2

0 0 0 0 1 1 1 1 1 1⊗ () − ⊗ () ⊕ + ⊗ () − ⊗ () ⊕()f f f fi i i i .

This can be rearranged to give:

1
2

0 0 0 1 1 1 1 1⊗ () − () ⊕() + ⊗ () − () ⊕()()f f f fi i i i .

We now make the observation that f fi i0 0 1() − () ⊕ is either 0 1− or

1 0− , depending on whether fi 0() is 0 or 1. But we can be clever about

this and write

f fi i
fi0 0 1 1 0 10() − () ⊕ = −() −()() .

We also deduce that

f fi i
fi1 1 1 1 0 11() − () ⊕ = −() −()() .

The state of our qubits after passing through the Fi gate can then be

written as

1
2

0 1 0 1 1 1 0 10 1⊗ −() −()() + ⊗ −() −()()()() ()f fi i .

We can rearrange this to give

1
2

1 0 0 1 1 1 0 10 1−() ⊗ −()() + −() ⊗ −()()()() ()f fi i ,

then

1
2

1 0 1 1 0 10 1−() + −()() ⊗ −()() ()f fi i ,

and finally

1
2

1 0 1 1
1
2

0 10 1−() + −()() ⊗ −()() ()f fi i .

This shows that the two qubits are not entangled, and the top qubit has

state

1
2

1 0 1 10 1−() + −()()() ()f fi i .

Quantum Algorithms  149

Let’s examine this state for each of the four possibilities for fi.

For f0 , we have f f0 00 1 0() = () = , so the qubit is 1 2 0 1() +() .

For f1, we have f1 0 0() = and f1 0 1() = , so the qubit is 1 2 0 1() −() .

For f2 , we have f2 0 1() = and f2 0 0() = , so the qubit is −() −()1 2 0 1 .

For f3 , we have f f3 30 1 1() = () = , so the qubit is −() +()1 2 0 1 .

The next step in the circuit is to send our qubit through the Hadamard

gate. This gate sends 1 2 0 1() +() to 0 and 1 2 0 1() −() to 1 . So we

know:

If i = 0, the qubit is 0 .

If i = 1, the qubit is 1 .

If i = 2, the qubit is − 1 .

If i = 3, the qubit is − 0 .

If we now measure the qubit in the standard basis, we will get 0 if i is

either 0 or 3, and we will get 1 if i is either 1 or 2. Of course, f0 and f3 are

the constant functions and f1and f2 are the balanced. So, if after measuring

we get 0, we know with certainty that the original function was constant. If

we get 1, we know that the original function was balanced.

Consequently, we need to ask the oracle only one question versus two.

For Deutsch’s problem there is therefore a slight speedup using a quan-

tum algorithm. This algorithm has no real practical applications, but, as

we noted earlier, it was the first example of proving that there are quantum

algorithms faster than classical ones.

We will look at two other quantum algorithms in detail. They both

involve inputting a number of qubits and then sending each one through

a Hadamard gate. We introduce a little more mathematics to help keep

the description of many qubits in superposition from becoming too

unwieldy.

The Kronecker Product of Hadamard Matrices

We know that the matrix for the Hadamard gate is given by

H =
−



















=
−







1
2

1
2

1
2

1
2

1
2

1 1

1 1
.

This tells us that

150  Chapter 8

H()0
1
2

1 1

1 1

1

0
1
2

1

1
1
2

1

0
1
2

0

1
=

−












= 





= 





+ 





= +1
2

0
1
2

1 ,

and

H()1
1
2

1 1

1 1

0

1
1
2

1

1
1
2

1

0
1
2

0

1
=

−












=
−







= 





− 





= −1
2

0
1
2

1 .

Suppose that we input two qubits and send both through Hadamard gates.

The four basis vectors will be sent as follows:

0 0⊗ goes to

1
2

0
1
2

1
1
2

0
1
2

1
1
2

00 01 10 11+



 ⊗ +



 = + + +() .

0 1⊗ goes to

1
2

0
1
2

1
1
2

0
1
2

1
1
2

00 01 10 11+



 ⊗ −



 = − + −() .

1 0⊗ goes to

1
2

0
1
2

1
1
2

0
1
2

1
1
2

00 01 10 11−



 ⊗ +



 = + − −() .

1 1⊗ goes to

1
2

0
1
2

1
1
2

0
1
2

1
1
2

00 01 10 11−



 ⊗ −



 = − − +() .

Recall that we can write everything in terms of four-dimensional kets. The

previous four statements are equivalent to saying:

1

0

0

0



















 goes to
1
2

1

1

1

1



















,

0

1

0

0



















 goes to
1
2

1

1

1

1

−

−



















,

Quantum Algorithms  151

0

0

1

0



















 goes to
1
2

1

1

1

1

−
−



















,

0

0

0

1



















 goes to
1
2

1

1

1

1

−
−



















.

This is a description of an orthonormal basis being sent to another ortho-

normal basis. So, we can write the matrix that corresponds to this. We call

this new matrix H ⊗2.

H ⊗ =
− −

− −
− −



















2 1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

There is an underlying pattern to this matrix that involves H.

H ⊗ =
− −

− −
− −



















=
−










2 1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1
2

1
2

1
2

1
2

1
2








 −



















−



















−
−

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
22

1
2















































=
−







H H

H H
.

This pattern continues. The matrix that corresponds to inputting three

qubits and sending all three through Hadamard gates can be written

using H ⊗2.

H
H H

H H
⊗

⊗ ⊗

⊗ ⊗=
−







 =

− −
− −

− −












3
2 2

2 2

1
2

1
2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1






− −
− −

− −



















− −
− −

−

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 11 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1−



















−
− −

− −
− −



















































=

− − − −
− − − −

1
2 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 −− − − −
− − − −

− − − −
− − − −

− − −

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 −−































1

152  Chapter 8

H
H H

H H
⊗

⊗ ⊗

⊗ ⊗=
−







 =

− −
− −

− −












3
2 2

2 2

1
2

1
2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1






− −
− −

− −



















− −
− −

−

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 11 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1−



















−
− −

− −
− −



















































=

− − − −
− − − −

1
2 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 −− − − −
− − − −

− − − −
− − − −

− − −

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 −−































1

As n increases these matrices quickly get large, but it is always true that

H
H H

H H
n

n n

n n
⊗

⊗ −() ⊗ −()

⊗ −() ⊗ −()=
−









1
2

1 1

1 1
,

and this gives us a recursive formula that lets us quickly calculate them.

These products of matrices telling us how to act on tensor products are

called Kronecker products.

For Simon’s algorithm we are going to need to study these matrices in

some detail, but for our next algorithm the key observation is that the

entries in the top row of each these matrices are all equal to one another;

for H n⊗ they all equal 1 2()n
.

The Deutsch-Jozsa Algorithm

Deutsch’s algorithm looked at functions of one variable. You were given

one of these and had to determine whether it was a constant or balanced

function. The Deutsch-Jozsa problem is a generalization of this.

We now have functions of n variables. The inputs for each of these vari-

ables, as before, can be either 0 or 1. The output is either 0 or 1. We are told

that our function is either constant—all the inputs get sent to 0, or all the

inputs get sent to 1 — or it is balanced—half the inputs get sent to 0 and

the other half to 1. If we are given one of these functions at random, how

many function evaluations do we need to determine whether the function

belongs to the constant group or to the balanced group?

To illustrate, we consider the case when n = 3. Our function takes three

inputs, each of which can take two values. This means that there are 23, or

8, possible inputs:

(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1).

Quantum Algorithms  153

Classically, suppose we evaluate f 0 0 0, ,() and get the answer that

f 0 0 0 1, ,() = . We cannot deduce anything from this piece of information

alone, so we ask for another function evaluation, say f 0 0 1, ,() . If we get

f 0 0 1 0, ,() = , then we are done. We know that the function cannot be con-

stant, so it must be balanced. On the other hand, if we get f 0 0 1 1, ,() = , we

cannot deduce anything from the two pieces of information we have. In

the worst possible scenario, we could get the same answer for the first four

questions and still not be able to answer the question. For example, from

the fact that f 0 0 0 1, ,() = , f 0 0 1 1, ,() = , f 0 1 0 1, ,() = , f 0 1 1 1, ,() = we cannot

determine whether or not the function is balanced. We need to ask one

more question. If the answer to the next question is also 1, then we know

the function is constant. If the answer is 0, then we know the function is

balanced.

This analysis works in general. Given a function of n variables, there

will be 2n possible input strings. In the best-case scenario we can obtain

the answer with just two questions to the oracle, but in the worst case it

will take us 2 11n− + questions. Since the n − 1 appears as an exponent, the

function is exponential. In the worst case it requires an exponential num-

ber of inquiries to the oracle. The Deutsch-Jozsa algorithm is a quantum

algorithm that just requires one question to the oracle, so the speedup is

substantial!

The first step, as in all of these questions, is to describe the oracle. For each

of the functions we need to construct an orthogonal matrix that captures

the essence of the function. We just generalize our previous construction.

Given any function f x x xn0 1 1, , ,…()− that has n boolean inputs and has

just one boolean output, we construct the gate F given by the following

circuit, where the slashes with n on the top lines indicate that we have n

wires in parallel.

Remember that this circuit tells us what happens when each of the kets,

xi , is either 0 or 1 . The input consists of n + 1 kets, x x xn0 1 1⊗ ⊗ … ⊗ −

y

F

n n

y f (x0, x1 xn, . . . , 1)

x0 xn 1x1 x0 xn 1x1

154  Chapter 8

and y , where the first n correspond to the function variables. The output

also consists of n + 1 kets, the first n of which are exactly the same as the

input kets. The last output is the ket f x x xn0 1 1, , ,…()− if y = 0 and the ket of

the other boolean value when y = 1.

The next step after describing how the black-box function works is to

give the quantum circuit that incorporates this function. It is the natural

generalization of the circuit used for Deutsch’s algorithm: all the top qubits

pass through Hadamard gates on either side of the black box.

As before, we will analyze what this circuit does step by step. We show the

case when n = 2, just to make things look a little less messy on the page, but

every step we do works in exactly the same way for every value of n.

Step 1.  The Qubits Pass through the Hadamard Gates

The top n inputs are all 0 . For n = 2, this is 00 . The following calculation

shows what happens.

H ⊗ () =
− −

− −
− −

































2 00

1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

0

0

0




=



















= + + +()1
2

1

1

1

1

1
2

00 01 10 11

It gives a superposition of all possible states; each of the basis kets has the

same probability amplitude (1 2 in this case).

(This calculation works for every value of n. After the n qubits have

passed through H n⊗ they are in superposition of all possible states, each of

which has the same probability amplitude: 1 2()n
.)

The bottom entry is just 1 . This becomes 1 12 0 2 1() − () after

passing through the Hadamard gate. At this stage, our three input qubits

will be in the following state.

1

F

00 0
n

H n
n n n

H

H n

Quantum Algorithms  155

1
2

00 01 10 11
1
2

0
1
2

1+ + +() ⊗ −



 . We will rewrite this as

1
2 2

00 0 1

1
2 2

01 0 1

1
2 2

10 0 1

1
2 2

11 0 1

⊗ −()

+ ⊗ −()

+ ⊗ −()

+ ⊗ −()

Step 2.  The Qubits Pass through the F Gate

After passing through the F gate the qubits will be in the following state.

1

2 2
00 0 0 0 0 1

1
2 2

01 0 1 0 1 1

1
2 2

10 1

⊗ () − () ⊕()

+ ⊗ () − () ⊕()

+ ⊗

f f

f f

f

, ,

, ,

,, ,

, ,

0 1 0 1

1
2 2

11 1 1 1 1 1

() − () ⊕()

+ ⊗ () − () ⊕()

f

f f

We now use the fact that that if a is either 0 or 1 we have the following

a a a− ⊕ = −() −()1 1 0 1

to rewrite the state as

 −() ⊗ −()

−() ⊗ −()

−()

+

+

()

()

()

1
1
2

00
1
2

0 1

1
1
2

01
1
2

0 1

1

0 0

0 1

1 0

f

f

f

,

,

, 11
2

10
1
2

0 1

1
1
2

11
1
2

0 11 1

⊗ −()

−() ⊗ −()+ ()f ,

As before, this shows that the bottom qubit is not entangled with the top

qubits. We just look at the top two qubits. These top two are in state:

1
2

1 00 1 01 1 10 1 110 0 0 1 1 0 1 1−() + −() + −() + −()()() () () ()f f f f, , , ,

156  Chapter 8

(The argument that we have used works for general n. At this stage you

obtain a state that is a superposition of all basis kets. Each ket, x x xn0 1 1… −

is multiplied by 1 2 1 0 1 1() −() …()−n f x xnx , , , .)

Step 3.  The Top Qubits Pass through the Hadamard Gates

The standard method is to convert our state to a column vector and then

multiply by the appropriate Kronecker product of the Hadamard matrix.

This gives:

1
4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

0 0

0 1− −
− −

− −



















−()
−()
−

()

()

f

f

,

,

(()
−()





















()

()

f

f

1 0

1 11

,

,

.

However, we are not going to calculate all of the entries in the resulting col-

umn vector. We are just going to calculate the top entry. This entry comes

from multiplying the bra corresponding to the top row of the matrix with

the ket given by the column vector. We get

1
4

1 1 1 10 0 0 1 1 0 1 1−() + −() + −() + −()()() () () ()f f f f, , , , .

This is the probability amplitude of the ket 00 . We calculate this ampli-

tude for the possible functions.

If f is constant and sends everything to 0, the probability amplitude is 1.

If f is constant and sends everything to 1, the probability amplitude

is −1.

For the balanced functions, the probability amplitude is 0.

Step 4.  Measure the Top Qubits

When we measure the top qubits we will get one of 00, 01, 10, or 11. The

question becomes “do we get 00?” If the function is constant, then we will

with probability 1. If the function is balanced, we get it with probability 0.

So, if the result of measuring gives 00, we know our function was constant.

If the result is not 00, then the function is balanced.

The analysis works for general n. Just before we measure the qubits the

probability amplitude for 0 0… is

1
2

1 1 10 0 0 0 0 1 1 1 1
n

f f f−() + −() + + −()()…() …() …(), , , , , , , , ,� .

Quantum Algorithms  157

As with n = 2, this number will be ±1 if f is constant and 0 if f is balanced.

So, if every measurement gives 0, the function is constant. If at least one of

the measurements is 1, the function is balanced.

Consequently, we can solve the Deutsch-Jozsa problem for any value n

with just one use of the circuit. We only need to ask the oracle one ques-

tion. Recall in the classical case, that in the worst case it required 2 11n− +

questions, so the improvement is dramatic.

Simon’s Algorithm

The two algorithms that we have seen so far have been unusual in that

we get the final answer with certainty after just one query. Most quantum

algorithms use a mixture of quantum algorithms and classical algorithms;

they involve more than one use of a quantum circuit; and they involve

probability. Simon’s algorithm contains all of these components. However,

before we describe the algorithm, we need to discuss the problem being

tackled, and before we can do that, we need to introduce a new way of add-

ing binary strings.

Bitwise Addition of Strings Modulo 2

We defined ⊕ to be the exclusive or XOR, or, equivalently, as addition mod-

ulo 2. Recall

0 0 0 0 1 1 1 0 1 1 1 0⊕ = ⊕ = ⊕ = ⊕ =

We extend this definition to the addition of binary strings of the same

length by the formula:

a a a b b b c c cn n n0 1 0 1 0 1� � �⊕ = , where

c a b c a b c a bn n n0 0 0 1 1 1= ⊕ = ⊕ … = ⊕, ,, .

This is like doing addition in binary, but ignoring any carries. Here’s a con-

crete example of bitwise addition:

1101

0111

1010

⊕

158  Chapter 8

The Statement of Simon’s Problem

We have a function f that sends binary strings of length n to binary strings

of length n. It has the property that there is some secret binary string s, such

that f x f y() = () if and only if y x= or y x s= ⊕ . We don’t allow s to be the

string consisting entirely of 0s; this forces pairs of distinct input strings to

have the same output strings. The problem is to determine the secret string

s. An example should make all of this clear.

We will take n = 3, so our function f will take binary strings of length 3

and give other binary strings of length 3. Suppose that the secret string is

s = 110. Now

000 110 110 001 110 111 010 110 100 011 110 101

100 110 010 101

⊕ = ⊕ = ⊕ = ⊕ =
⊕ = ⊕⊕ = ⊕ = ⊕ =110 011 110 110 000 111 110 001

.

Consequently, for this value of s, we get the following pairings:

f f f f f f f f000 110 001 111 010 100 011 101() = () () = () () = () () = () .

A function with this property is

f f f f

f f f

000 110 101 001 111 010

010 100 111 011
() = () = () = () =
() = () = () = ff 101 000() =

.

Now, of course, we don’t know the function f or the secret string s: We want

to find s. The question is how many function evaluations need to be made

to determine this string?

We keep evaluating the function f on strings. We stop as soon as we get a

repeated answer. Once we have found two input strings that give the same

output, we can immediately calculate s.

For example, if we find that f f011 101() = () ,then we know that

011 1010 1 2⊕ =s s s .

Using the fact that

011 011 000⊕ = ,

bitwise add 011 to the left of both sides of the equation to obtain

s s s0 1 2 011 101 110= ⊕ = .

How many evaluations do we have to make using a classical algorithm? We

have eight binary strings. It is possible to evaluate four of these and get four

Quantum Algorithms  159

different answers, but with the fifth evaluation we are guaranteed to get a

pair. In general, for strings of length n, there are 2n binary strings and, in the

worst case, we will need to 2 11n− + function evaluations to get a repeat. So,

in the worst case, we will need to ask the oracle 2 11n− + questions.

Before we look at the quantum algorithm, we need to look at the Kro-

necker product of Hadamard matrices in a little more detail.

The Dot Product and the Hadamard Matrix

Given two binary strings, a a a an= −0 1 1� and b b b bn= −0 1 1� of the same

length, we define the dot product by

a b a b a b a bn n⋅ = × ⊕ × ⊕ ⊕ ×− −0 0 1 1 1 1� , where × denotes our usual

multiplication.

So, for example, if a = 101 and b = 111, then a b⋅ = ⊕ ⊕ =1 0 1 0. This opera-

tion can be thought of as multiplying corresponding terms of the sequences,

then adding and finally determining whether the sum is odd or even.

In computer science, we often start counting at 0, so instead of counting

from 1 to 4 we count from 0 to 3. Also, we often use binary. The numbers 0,

1, 2, and 3 are represented in binary by 00, 01, 10, 11. Given a 4 4× matrix,

we will label both the rows with these numbers, as is shown here:

00 01 10 11

00

01

10

11

 * * * *

 * * * *

 * * * *

 * * * *



















The position of an entry in this matrix is given by listing both the row and

the column in which it appears. If we make the entry in the ith row and jth

column be i j⋅ , we get the following matrix.

00 01 10 11

00

01

10

11

 0 0 0 0

 0 1 0 1

 0 0 1 1

 0 1 1 0



















Compare this matrix to H ⊗2. Notice that the entries that are 1 in our dot

product matrix are in exactly the same positions as the negative entries in

H ⊗2. Using the facts that −() =1 10 and −() = −1 11 , we can write

160  Chapter 8

H ⊗

⋅ ⋅ ⋅ ⋅

⋅ ⋅

=

− − − −
− −2

00 00 00 01 00 10 00 11

01 00 011
2

1 1 1 1

1 1

() () () ()

() () 001 0110 00 11

10 00 10 01 10 10 10 11

1 1

1 1 1 1

() ()

() () () ()

(

− −
− − − −

⋅ ⋅

⋅ ⋅ ⋅ ⋅

−− − − −

















⋅ ⋅ ⋅ ⋅1 1 1 111 00 11 01 1110 1111) () () ()

.

This method of finding where the positive and negative entries holds in

general; for example, if we want the entry of H ⊗3 that is in the row with

number 101 and column with number 111, we calculate the dot product

and get 0. This tells us that the entry will be positive.

Hadamard Matrices and Simon’s Problem

Now that we know how to find entries of Kronecker products of Hadamard

matrices, we are going to use this knowledge to see what happens when

we add two columns of one of these products. We are going to add two

columns that are paired by the secret string s given in Simon’s problem. If

one column is labeled by the string b , the other will have label b s⊕ . We are

going to add these two columns together.

To illustrate, we will work with strings of length 2, and suppose the

secret string is 10. We will be adding column 00 to 10, or column 01 to 11.

Here is H ⊗2.

H ⊗ =
− −

− −
− −



















2 1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Adding the 00 column to 10 gives:

1
2

1

1

1

1

1
2

1

1

1

1

1
2

2

2

0

0



















+
−
−



















=



















.

Adding the 01 column to 11 gives:

1
2

1

1

1

1

1
2

1

1

1

1

1
2

2

2

0

0

−

−



















+
−
−



















=
−



















.

Quantum Algorithms  161

Notice that some probability amplitudes are getting amplified and some are

canceling. What exactly is going on here?

It is fairly easy to check that products and bitwise addition obey the

usual law of exponents.

−() = −() −()⋅ ⊕() ⋅ ⋅1 1 1a b s a b a s .

This tells us that −() ⋅ ⊕()1 a b s and −() ⋅1 a b will be equal if a s⋅ = 0, and that

−() ⋅ ⊕()1 a b s and −() ⋅1 a b will have opposite signs if a s⋅ = 1.

We can summarize this as:

−() + −() = ± ⋅ =

−() + −() = ⋅ =

⋅ ⊕() ⋅

⋅ ⊕() ⋅

1 1 2 0

1 1 0 1

a b s a b

a b s a b

a s

a s

if

if
.

This tells us that when we add the two columns given by b and b s⊕ , the

entry in row a will be 0 if a s⋅ = 1, and will be either 2 or −2 if a s⋅ = 0. In

general, the entries cancel in the rows labeled with strings that have a dot

product of 1 with the string s.

Looking back at our example, the reason that the bottom two entries are

0 is that these rows have labels 10 and 11 and these both have a dot prod-

uct of 1 with our secret string s. The nonzero entries occur in the rows with

labels 00 and 01 and these both have a dot product of 0 with s.

We now have the information needed to understand the quantum cir-

cuit for Simon’s problem. It is going to give us a string whose dot product

with the secret string s is 0. It is going to do that by adding two columns of

the Hadamard matrix. Let’s see how it works.

The Quantum Circuit for Simon’s Problem

The first thing is to construct the black box—the gate that acts like f. The

following circuit gives the construction.

We can think of this as inputting two strings consisting of 0 s and 1 s,

both of which have the same length. The top string is unchanged. The

F

n n

n n

x0 xn 1x0 xn 1

y0 yn 1 f ()x0 xn 1y0 yn 1

162  Chapter 8

bottom string is the function evaluated on the top string added bitwise to

the bottom string.

The following circuit gives the circuit for the algorithm.

We will illustrate what happens in the case n = 2. Everything we do general-

izes straightforwardly for general n.

The first step consists of the qubits in the top register passing through

the Hadamard gates. This should now look familiar. The top two qubits are

initially in state 00 , while after passing through the Hadarmard gates they

will be in state

1
2

00 01 10 11+ + +() .

The bottom two qubits remain in state 00 . So, at this stage the four qubits

are in state:

1
2

00 00 01 00 10 00 11 00⊗ + ⊗ + ⊗ + ⊗()

The next thing that happens is that the qubits pass through the F gate. This

changes the state to:

1
2

00 00 01 01 10 10 11 11⊗ () + ⊗ () + ⊗ () + ⊗ ()()f f f f

The top qubits now pass through the Hadamard gates, which changes the

state to:

1
4

00 01 10 11 00

1
4

00 01 10 11 01

1
4

00 01 10 11

+ + +() ⊗ ()

+ − + −() ⊗ ()

+ + − −(

f

f

)) ⊗ ()

+ − − +() ⊗ ()

f

f

10

1
4

00 01 10 11 11

F

|00 . . . 0
n

H⊗n
n n

H⊗n
n

n n
00 0

Quantum Algorithms  163

The pattern of + and − signs comes from the matrix for H ⊗2. We now

rearrange the terms, solving for the first two qubits, which results in the

following:

1
4

00 00 01 10 11

1
4

01 00 01 10 1

⊗ () + () + () + ()()

+ ⊗ () − () + () −

f f f f

f f f f 11

1
4

10 00 01 10 11

1
4

11 00 01 1

()()

+ ⊗ () + () − () − ()()

+ ⊗ () − () −

f f f f

f f f 00 11() + ()()f

This way of writing the state has a couple of nice features. The first is that

here, also, the pattern of + and − signs comes from the matrix for H ⊗2. The

second is that the pairs of qubits to the left of the tensor product corre-

spond to the row numbers.

Now we use the fact that we know that f b f b s() = ⊕(), so f b f b s() = () ⊕ .

We can simplify things, combining these terms, by adding their probability

amplitudes. This corresponds to the column addition we just looked at. To

illustrate, suppose that s = 10, then f f00 10() = () and f f01 11() = (). If we

plug these values into the state, we obtain:

1
4

00 00 01 00 01

1
4

01 00 01 00 0

⊗ () + () + () + ()()

+ ⊗ () − () + () −

f f f f

f f f f 11

1
4

10 00 01 00 01

1
4

11 00 01 0

()()

+ ⊗ () + () − () − ()()

+ ⊗ () − () −

f f f f

f f f 00 01() + ()()f

which simplifies to

1
4

00 2 00 2 01

1
4

01 2 00 2 01

1
4

10 0

1
4

1

⊗ () + ()()

+ ⊗ () − ()()

+ ⊗ ()

+

f f

f f

11 0⊗ ()

.

164  Chapter 8

The kets to the left of the tensor products are labeled with the row numbers

of the matrix. The 0s on the right of the tensor products occur in the rows

whose dot product with s is 1.

We can simplify the state to:

1
2

00
1
2

00 01
1
2

01
1
2

00 01⊗ () + ()() + ⊗ () − ()()f f f f .

When we measure the top two qubits we will get either 00 or 01, each with

probability 1/2.

Though we have only looked at the relatively simple case of n = 2, every-

thing we have done holds for every value of n. At the end of the process we

will end up with one of the strings whose dot product with the secret string

is 0. Each of these strings is equally likely.

You might be concerned that after all this work we still don’t know s.

This is where the classical part of Simon’s algorithm comes in.

The Classical Part of Simon’s Algorithm

We start with an example with n = 5. We know that there is some secret

number s s s s s s= 0 1 2 3 4. We are not allowing 00000, so there are 2 5 1 31^ − =

possible choices for s. We are going to try to find it using Simon’s quantum

circuit.

We run it and get 10100 as an answer. We know that the dot product of

this with s gives 0. So,

1 0 1 0 0 00 1 2 3 4× ⊕ × ⊕ × ⊕ × ⊕ × =s s s s s .

This tells us that s s0 2 0⊕ = . Since these digits are either 0 or 1, we deduce

that s s0 2= .

We run the circuit again hoping that we don’t get 10100 again. (The

probability of this happening is 1 16/ , so we are fairly safe.) We also hope

that we don’t get 00000, which wouldn’t give us any new information. Sup-

pose we get 00100. Then we know that

0 0 1 0 0 00 1 2 3 4× ⊕ × ⊕ × ⊕ × ⊕ × =s s s s s .

This shows that s2 must be 0. From the first step, we can now deduce that

s0 must also be 0. We run the circuit again and get 11110. We know that

1 0 1 1 0 1 0 01 3 4× ⊕ × ⊕ × ⊕ × ⊕ × =s s s ,

Quantum Algorithms  165

which tells us that s s1 3= . Running the circuit again gives 00111, telling us

that

0 0 0 1 0 1 1 01 3 4× ⊕ × ⊕ × ⊕ × ⊕ × =s s s .

Consequently, we must have s s3 4= and, since s s1 3= , we have s s s1 3 4= = .

We know that not all of the digits are 0, so we must have s s s1 3 4 1= = = ,

and consequently s must be 01011. For this example, we made four calls to

the oracle.

At this point, there are a couple of questions that you might be ask-

ing. The first concerns the algorithm for finding s using the outputs of the

quantum circuit. We have seen what to do in a specific case, but is there

an algorithm—a step-by-step procedure—that tells you what to do in every

case? The second question concerns how we are measuring the number of

questions we are asking the oracle. When we looked at the classical algo-

rithm, we took the worst possible case and saw that after 2 11n− + questions

we would definitely have our answer. But when we come to the quantum

algorithm, the worst possible case is much worse! We are getting an answer

at random. The answer does have a dot product of 0 with s, but we could

get the same answer more than once. We could run our quantum circuit

2 11n− + times and get a string of 0s every single time. It is unlikely, but it is

possible. A string of 0s gives us no information, so it is possible that after

2 11n− + questions to the oracle we haven’t deduced anything at all about

the secret number. We will address both of these concerns.

Each time we run the circuit, we get a number whose dot product with s

is zero. This gives us a linear equation in the n unknowns. Running the cir-

cuit several times results in our obtaining several—a system of—equations.

In the previous example, at each stage we got a new equation, but that new

equation also gave us some new information. The technical term for this is

that the equation is linearly independent of the previous equations. In order

to calculate s we need a system of n − 1 linearly independent equations.***

Algorithms for solving systems of equations are extremely well known.

They are studied in courses like Linear Algebra and Matrix Theory and have

***  You may have seen systems of linear equations before and remember that you

need n equations to solve a system with n unknowns. This is true when the coeffi-

cients can be real numbers, but in our case the coefficients are either 0 or 1. This

restriction and the fact that the string of all 0s is not allowed for s make it possible

for us to reduce the number of equations by one.

166  Chapter 8

numerous applications. They are so commonly needed that they are pro-

grammed into most scientific calculators. We won’t discuss them here apart

from mentioning that the number of steps required to solve a system of n

equations can be bounded above by a quadratic expression involving n. We

say the system can be solved in quadratic time.

The other question that we need to address is this: How many times do

we need to run the quantum circuit? As we pointed out, in the worst-case

scenario, we can keep running our qubits through the circuit and never get

any useful information. However, this is extremely unlikely. We examine

this idea in more detail in the next section.

Complexity Classes

In complexity theory, the main classification is between problems that take

polynomial time to solve and those that need more than polynomial time.

Polynomial time algorithms are regarded as being practical even for very

large values of n, but non-polynomial time algorithms are regarded as being

infeasible for large n.

Problems that classical algorithms can solve in polynomial time are

denoted by P. Problems that quantum algorithms can solve in polynomial

time are denoted by QP (sometimes it is denoted by EQP, for exact quantum

polynomial time). Usually when we use these terms we are referring to the

number of steps that an algorithm takes, but, remember, we defined a new

way of measuring complexity—query complexity—that counts the number

of questions we need to ask an oracle. We saw that the Deutsch-Jozsa prob-

lem was not in the class P, but belonged to QP for query complexity. (The

constant function is a degree 0 polynomial.) This is sometimes described as

saying that the Deutsch-Jozsa problem separates P and QP—it is a problem

that belongs to QP but not to P for query complexity.

However, let’s recall the worst-case scenario for the classical algorithm.

To make things more concrete, we will take n = 10. We are given a func-

tion that takes 10 inputs and told that it is either balanced or constant. We

have to keep evaluating our function on specific inputs until we can deduce

the answer. There are 2 102410 = possible inputs. The worst-case scenario is

when the function is balanced, but we get the same answer for the first 512

evaluations, and then on the 513th evaluation we get the other value. But

how likely is this to happen?

Quantum Algorithms  167

If the function is balanced, for each input value we are equally likely to

get either a 0 or a 1. This can be compared to tossing a fair coin and obtain-

ing a head or a tail. How likely is it to toss a fair coin 512 times and get

heads every time? The answer is 1 2 512() , which is less than 1 divided by a

googol, where a googol is 10100 . It is a minute number!

Suppose you were given a coin and asked whether it was fair or was

double-headed. If you toss it once and get heads, you can’t really answer

the question. But if you toss it ten times and it comes up heads every time,

then you can be fairly sure that it is double-headed. Of course, you could be

wrong, but in practice we are willing to accept being wrong as long as the

probability of this happening is very small.

This is what we do for the bounded-error complexity classes. We choose

some bound on the probability of getting an error that we think is accept-

able. Then we look at algorithms that can answer the question within our

bound for error.

Returning to the Deutsch-Jozsa example, suppose that we want at least a

99.9 percent success rate, or equivalently an error rate of less than 0.1 per-

cent. If a function is balanced the probability of evaluating the function 11

times and getting 0 every time is 0.00049 to five decimal places. Similarly,

the probability of obtaining 1 every time is 0.00049. Consequently, the

probability of obtaining the same answer 11 times in a row when the func-

tion is even is just less than 0.001. So if we are willing to accept a bound

on the probability of error of 0.1 percent, we can choose to make at most

11 function evaluations. If during the process we get both a 0 and a 1, we

can stop and know with certainty that our function is balanced. If all 11

evaluations are the same, we will say the function is constant. We could be

wrong, but our error rate is less than our chosen bound. Notice that this

argument works for any n. In every case, we need 11 function evaluations

at most.

Problems that classical algorithms can solve in polynomial time with the

probability of error within some bound are denoted BPP (for bounded-error

probabilistic polynomial time). The Deutsch-Jozsa problem is in the class

BPP.

One thing that you might be worried about is whether a problem could

be in BPP for one bound on the probability of error, but not in the class BPP

for a smaller bound. This doesn’t happen. If the problem is in the class BPP,

it will be there for every choice of the bound.

168  Chapter 8

We now return to Simon’s algorithm. We need to keep sending qubits

through the circuit until we have n − 1 linearly independent equations. As

we know, in the worst case this process can go on forever, so Simon’s algo-

rithm is not in class QP. However, let’s choose a bound that we are willing

to accept on the probability of making an error. Then we can calculate N so

that 1 2()N is less than our bound.

We won’t prove this, but it can be shown that if we run the circuit n N+

times, the probability of the n N+ equations containing a system n − 1 lin-

early independent equations is greater than 1 1 2− ()N .

We can now state Simon’s algorithm. First we decide on a bound on the

probability of error and calculate the value N. Again, the number N does

not depend on n. We can use the same value of N in each case. We run

Simon’s circuit n N+ times. The number of queries is n N+ , which, since N

is fixed, is a linear function of n. We make the assumption that our system

of n N+ equations contains n − 1 independent vectors. We could be wrong,

but the probability of being wrong is less than the bound that we chose.

Then we solve the system of n N+ equations using a classical algorithm.

The time taken will be quadratic in n N+ , but because N is a constant, this

can be expressed as a quadratic in n.

The algorithm as a whole contains the quantum part that takes linear

time added to the classical part that takes quadratic time, giving quadratic

time overall. Problems that quantum algorithms can solve in polynomial

time with the probability of error within some bound are denoted BQP (for

bounded-error quantum polynomial time). Simon’s algorithm shows the

problem belongs to BQP for query complexity.

We showed that the classical algorithm, in the worst case, took 2 11n− +

function evaluations—this is exponential in n, not polynomial, so the

problem definitely does not belong to P. It can also be shown that even if

we allow a bound on the probability of error the algorithm is still exponen-

tial, so the problem does not belong to BPP. We say that Simon’s problem

separates BPP and BQP for query complexity.

Quantum Algorithms

We started this chapter by describing how in many popular descriptions the

speedup provided by quantum algorithms is said to come solely from quan-

tum parallelism—the fact that we can put the input into a superposition

Quantum Algorithms  169

that involves all the basis states. However, we have looked at three algo-

rithms and have seen that though we need to use quantum parallelism, we

need to do much more. We will briefly look at what is needed and why it

is hard!

The three algorithms we have studied are the most elementary and con-

sidered standard, but as you have probably noticed they are by no means

trivial. The dates when they were published tells an important story. David

Deutsch published his algorithm in his landmark paper of 1985. This was

the first quantum algorithm, and it showed that a quantum algorithm

could be faster than a classical one. Deutsch and Jozsa published their gen-

eralization of Deutsch’s algorithm in 1992, seven years later. It might seem

surprising that what seems to be a fairly straightforward generalization took

so long to find, but it is important to realize that it is the modern notation

and presentation that make the generalization seem to be the natural one.

Deutsch’s paper doesn’t state the problem exactly the way it is stated here,

and it doesn’t use diagrams for quantum circuits that are now standard.

That said, there was an incredibly productive period from 1993 to 1995

when many of the most important algorithms were discovered. Daniel

Simon’s algorithm was published in this window, as were the algorithms by

Peter Shor and Lov Grover that we will look at in the next chapter.

Orthogonal matrices represent quantum gates. Quantum circuits con-

sist of combinations of gates. These correspond to multiplying orthogonal

matrices, and since the product of orthogonal matrices results in an orthog-

onal matrix, any quantum circuit can be described by just one orthogonal

matrix. As we have seen, an orthogonal matrix corresponds to a change of

basis—a different way of viewing the problem. This is the key idea. Quan-

tum computing gives us more ways of viewing a problem than classical

computing does. But in order to be effective, there has to be a view that

shows the correct answer separated from other possible incorrect answers.

Problems that quantum computers can solve faster than classical comput-

ers need to have a structure that becomes visible only when we transform it

using an orthogonal matrix.

The problems that we have looked at are clearly reverse-engineered.

They are not important problems that people have been considering for

years and that we have only now discovered that if we view them from

the right quantum computing perspective they become simpler to solve.

Rather, they are problems that are specially created using the structure of

170  Chapter 8

Kronecker products of Hadamard matrices. Of course, what we really want

is not to reverse-engineer a problem, but to take a problem that is impor-

tant and then construct a quantum algorithm that is faster than any known

classical algorithm. This is what Peter Shor achieved in his 1994 landmark

paper, in which he showed (among other things) how quantum computing

could be used to break the codes that are currently used for Internet secu-

rity. We will briefly discuss Shor’s algorithm in the next chapter, where we

look at the impact of quantum computing.

9  Impact of Quantum Computing
Chapter 9
Impact of Quantum Computing

© Massachusetts Institute of TechnologyAll Rights Reserved

It is, of course, impossible to predict the long-term impact of quantum

computing with any accuracy. If we look back at the birth of the modern

computer in the 1950s, nobody could have predicted how much comput-

ers would change society and how dependent we would become on them.

There are well-known quotes from computer pioneers proclaiming that the

world would only need a handful of computers and that nobody would

ever need a computer in their home. These quotes are out of context. The

authors were generally referring to specific types of computers, but the

impression they give, though exaggerated, is true. Initially computers were

massive, had to be in air-conditioned rooms, and were not very reliable.

Today, I have a laptop, a smartphone, and a tablet. All three are far more

powerful than the first computers. I think that even visionaries like Alan

Turing would be amazed at the extent to which computers have thoroughly

permeated all levels of society. Turing did discuss chess playing and arti-

ficial intelligence, but nobody predicted that the rise of e-commerce and

social media would come to dominate so much of our lives.

Quantum computing is now in its infancy, and the comparison to the

first computers seems apt. The machines that have been constructed so

far tend to be large and not very powerful, and they often involve super-

conductors that need to be cooled to extremely low temperatures. Already

there are some people saying that there will be no need for many quantum

computers to be built and that their impact on society will be minimal.

But, in my opinion, these views are extremely shortsighted. Although it

is impossible to predict what the world will be like in fifty years time, we

can look at the dramatic changes in quantum computing over the last few

years and see the direction in which it is heading. It might be some time

before we get powerful universal quantum computers, but even before we

172  Chapter 9

do, quantum computing looks likely to make a substantial impact on our

lives. In this chapter we will look at some ways that this could occur. In

contrast to the previous chapter where we looked at three algorithms in

considerable depth, we will look at a wide variety of topics at a less detailed

level.

Shor’s Algorithm and Cryptanalysis

The major result in quantum computing concerning cryptanalysis is Shor’s

algorithm. To fully understand this algorithm requires a substantial math-

ematics background. It uses Euler’s theorem and continued fraction expan-

sions from number theory. It also requires knowledge of complex analysis

and the discrete Fourier transform. It marks the place where the theory of

quantum computation changes from requiring just elementary mathemat-

ics to a more substantial background. Consequently, we won’t be covering

the algorithm in detail, but its importance means that we should at least

look at it.

It is an algorithm, like Simon’s algorithm, that has a quantum part and

a classical part. The quantum part is similar to that of Simon’s algorithm.

Before we give a brief description, we will look at the problem that Shor

wanted to tackle.

RSA Encryption

The RSA encryption method is named after its inventors, Ron Rivest, Adi

Shamir, and Leonard Adleman. They published a paper on it and then pat-

ented it in 1978. Later it became known that Clifford Cocks, working for

the Government Communications Headquarters (GCHQ), a British intel-

ligence agency, had essentially invented the same algorithm in 1973. The

British classified it, but they did pass it on to the Americans. It seems, how-

ever, that neither of the American or British intelligence agencies used it or

realized how important it would become. Nowadays, it is used widely on

the Internet for encrypting data sent from one computer to another. It is

used for Internet banking and for electronic purchases using credit cards.

We will show how the encryption algorithm works with an example

in which we want to share some confidential information with our bank

and, at the same time, want to protect it from anyone who might be

eavesdropping.

Impact of Quantum Computing  173

When you want to communicate with the bank, you want to encrypt

your data so that if it is intercepted it cannot be read. The actual encryption

of the data is going to be done using a key that both you and the bank share

to both encrypt and decrypt—this is called a symmetric key—and must be

kept secret by both parties. The key is generated on your computer and sent

to the bank, but, of course, we can’t just send the key without encrypting

it. We need to encrypt the key that we are going to use to encrypt our com-

munication with the bank. This is where RSA encryption enters the picture.

It is a way of securely sending the key to the bank.

To start the communication with the bank, your computer generates the

key that will be used later for encryption and decryption for both you and

the bank. We will call the key K.

The bank’s computer finds two large prime numbers that we will denote

by p and q. The primes need to be roughly the same size and the product N

= pq, called the modulus, should contain at least 300 digits using standard

decimal numbers (1024 binary digits), which is currently considered large

enough to ensure security. This is fairly straightforward. There are efficient

ways of generating these primes and multiplying the two primes to get the

modulus N is easy.

The second step is for the bank to find a relatively small number e that

shares no common factors with either p − 1 or q − 1. This is also easy to

compute. The bank keeps the primes p and q secret, but sends the numbers

N and e.

Your computer takes the key K and raises it to the power e taking the

remainder after dividing by N. Once more, this is easy to do. This is the

number is called Ke mod N. This is then sent to the bank. The bank knows

how to factor N into p and q, and this lets it quickly calculate K.

If someone is tapping into the communication, they will know N and e,

both of which the bank sent, they will also know the number Ke mod N that

you sent. To calculate K, the eavesdropper needs to know the factors p and

q of N, but these are being kept secret. The security of the system depends

on the fact that the eavesdropper will not be able to factor the number N

to obtain p and q.

The question is how hard is it to factor a number that is the product of

two large primes? The answer is that it seems hard. All of the other steps

involved in RSA encryption can be performed with classical algorithms that

take polynomial time, but nobody has discovered a classical algorithm that

174  Chapter 9

can factor a product of two large primes in polynomial time. But, on the

other hand, nobody has a proof that such an algorithm doesn’t exist.

This is where Shor enters the picture. He constructed a quantum algo-

rithm that does factor a product of large prime numbers. The algorithm

belongs to class BQP, which means that it works with bounded error in

polynomial time. One thing that needs to be emphasized is that we are

no longer talking about query complexity. We are not assuming that we

can ask questions of an oracle. We are counting the total number of steps

or, equivalently, the time needed to get from the beginning to the end of

the computation. Shor is giving a concrete algorithm for each step. The

fact that the algorithm belongs to BQP means that if it is implemented it

becomes feasible to factor large numbers, and, more important, it means

that if the quantum circuit can be actually constructed, then RSA encryp-

tion is no longer secure.

Shor’s Algorithm

Shor’s algorithm involves a significant amount of mathematics. We will just

give a short and somewhat vague description of the quantum part.

An important part of the algorithm is a gate that is called the quantum

Fourier transform gate. This can be thought of as a generalization of the Had-

amard gate. In fact, for one qubit the quantum Fourier transform gate is

exactly H. Recall that we used a recursive formula that told us how to get

from the matrix for H n⊗ −1 to the matrix for H n⊗ . Similarly, we can give a

recursive formula for the quantum Fourier transform matrix. The major

difference between H n⊗ and the quantum Fourier matrix is that the entries

in the latter case are generally complex numbers—more specifically, they

are complex roots of unity. Recall that the entries for H n⊗ are either 1 or

−1. These are the two possible square roots of 1. When we look for fourth

roots of 1 we again just get ±1 if we are using real numbers, but we get two

other roots if we use the complex numbers. In general, 1 has n complex nth

roots. The quantum Fourier transform matrix on n qubits involves all the

2nth complex roots of unity.

Simon’s algorithm was based on the properties of H n⊗ . It used interfer-

ence, the amplitudes were either 1 or −1, which meant that when we added

terms, the kets either canceled or reinforced one another. Shor realized that

a similar idea applied to the quantum Fourier matrix, only now the ampli-

tudes are given not just by 1 and −1, but also by all the 2nth complex roots

Impact of Quantum Computing  175

of unity, which means that we can detect more types of periods than just

the ones that Simon’s algorithm considers.

Recall that we know the number N and want to factor it into the product

of the two primes p and q. The algorithm chooses a number a satisfying

1 < <a N . It checks to see if a shares any factors with N, if it does we can

deduce that a is a multiple of either p or q. From there it is easy to complete

the factorization. If a does not share any factors with N, then we calcu-

late a mod(N), a2 mod(N), a3 mod(N), and so on, where ai mod(N) means

calculate ai and then take the remainder when divided by N. Since these

numbers are remainders, they will all be less than N. Consequently, this

sequence of numbers will eventually repeat. There will be some number r

such that a N a Nrmod mod() = (). The number r can be thought of as the

period, and it is this number that the quantum part of Shor’s algorithm

computes. Once r has been found, classical algorithms can use this fact to

determine the factors of N.

Well, that description was rather sketchy, but it gives some idea of how

the quantum part of Shor’s algorithm works. The key part is that Simon’s

algorithm for finding the secret string s can be generalized to find the

unknown period r.

The algorithm actually has been implemented, but just for small num-

bers. In 2001, it was used to factor 15 and in 2012 it factored 21. Clearly, it

is nowhere near factoring 300 digit numbers at the moment. But how long

will it take before a circuit can be built for numbers of this size? It seems to

be only a matter of time until the RSA encryption scheme will no longer

be secure.

Over the years other methods of encryption have been developed, but

Shor’s algorithm also works on many of these. It has become clear that

we need to develop new cryptographic methods—and these new methods

should be able to withstand not just classical attacks but also attacks by

quantum computers.

Post-quantum cryptography is now an extremely active area, with new

methods of encryption being developed. Of course, there is no reason why

these have to use quantum computing. We just need the encrypted message

to be able to withstand being broken by a quantum computer. But quantum

ideas do give us ways of constructing secure codes.

We have seen two quantum key distribution (QKD) schemes that are

secure: the BB84 and Ekert’s protocols. Several labs have succeeded in

176  Chapter 9

getting QKD systems up and running. There are also a few companies that

offer QKD systems for sale. One of the first times that QKD was used in

a real-world setting was in 2007, when ID Quantique set up a system to

secure the transmission of votes between a counting station and Geneva’s

main polling office during a Swiss parliamentary election.

Many countries are experimenting with small quantum networks using

optic fiber. There is the potential of connecting these via satellite and being

able to form a worldwide quantum network. This work is of great interest

to financial institutions.

The most impressive results, so far, involve a Chinese satellite that is

devoted to quantum experiments. It’s named Micius after a Chinese phi-

losopher who did work in optics. This is the satellite that was used for the

quantum teleportation we mentioned in an earlier chapter. It has also been

used for QKD. A team in China connected to a team in Austria—the first

time that intercontinental QKD has been achieved. Once the connection

was secured, the teams sent pictures to one another. The Chinese team

sent the Austrians a picture of Micius, and the Austrians sent a picture of

Schrödinger to the Chinese.

Grover’s Algorithm and Searching Data

We are entering the era of big data. Searching through enormous data sets

efficiently is now a high priority for many major companies. Grover’s algo-

rithm has the potential to speed up data searches.

Lov Grover invented the algorithm in 1996. Like Deutsch’s and Simon’s

algorithms, its speedup over classical algorithms is given in terms of query

complexity. Of course, to implement the algorithm for real-world data

searches, we don’t have oracles that can answer our questions. We have

to construct an algorithm that does the work of the oracle. But before we

begin to discuss how to implement Grover’s algorithm, we will look at what

it does and how it does it.

Grover’s Algorithm

Imagine that you have four cards in front of you. They are all face down.

You know that one of them is the ace of hearts, and this is the card you

want to find. How many cards must you turn over until you know the loca-

tion of the ace of hearts?

Impact of Quantum Computing  177

You might be lucky and turn it over on the first try, or you might be

unlucky and turn over three cards, none of which is the ace. If you are

unlucky and haven’t turned it over after three tries, then you know that

the last card must be the ace. So, we know where the ace is after turning

over between one and three cards. On average we have to turn over 2.25

cards.

This problem is one that Grover’s algorithm tackles. Before we begin

describing the algorithm, we will reword the problem. We have four binary

strings: 00, 01, 10, and 11. We have a function f that sends three of these

strings to 0 and the other one to 1. We want to find the find the binary

string that is sent to 1. For example, we might have f 00 0() = , f 01 0() = ,

f 10 1() = , and f 11 0() = . The problem now asks how many function evalua-

tions do we need to make before we find that f 10 1() = . We are just restating

the problem, wording it in terms of functions instead of cards, so we know

the answer is the same as before: 2.25 on average.

As with all query complexity algorithms we construct an oracle—a gate

that encapsulates the function. For our example, where we just have four

binary strings, the oracle is given in figure 9.1.

The circuit for Grover’s algorithm is given in figure 9.2.

The algorithm has two steps. The first is to flip the sign of the prob-

ability amplitude connected to the location we are trying to find. The sec-

ond is to amplify this probability amplitude. We will show how the circuit

does this.

After going through the Hadamard gates, the top two qubits will be in

state

1
2

00 01 10 11+ + +()

y y f (x0, x1)

x0 x1 x0 x1

F

2 2

Figure 9.1
The oracle for f.

178  Chapter 9

and the bottom qubit will be in state

1
2

0
1
2

1− .

We can write the combined state as

1
2

00
1
2

0
1
2

1 01
1
2

0
1
2

1⊗ −



 + ⊗ −








  + ⊗ −



 + ⊗ −





10

1
2

0
1
2

1 11
1
2

0
1
2

1 .

The qubits then pass through the F gate. This flips 0 and 1 of the third

qubit in the location we are trying to find. If we use our example where

f 10 1() = , we obtain

1
2

00
1
2

0
1
2

1 01
1
2

0
1
2

1⊗ −



 + ⊗ −








  + ⊗ −



 + ⊗ −





10

1
2

1
1
2

0 11
1
2

0
1
2

1 .

This can be written as

1
2

00 01 10 11
1
2

0
1
2

1+ − +() ⊗ −



 .

The result is that the top two qubits are not entangled with the bottom

qubit, but we have flipped the sign of the probability amplitude of 10 ,

which corresponds to the location we are trying to find.

At this stage, if we were to measure the top two qubits we would get one

of the four locations, with each of the four answers being equally likely. We

F

2
H 2

2 2
A

2

H1

00

Figure 9.2
Grover algorithm circuit.

Impact of Quantum Computing  179

need another trick and that is amplitude amplification. Amplitude ampli-

fication works by flipping a sequence of numbers about their mean. If a

number is above the mean, it is flipped below the mean. If a number is

below the mean, it is flipped above the mean. In each case the distance to

the mean is preserved. To illustrate, we use the four numbers 1, 1, 1, and

−1. Their sum is 2, and so their mean is 2/4, which is equal to 1/2. We then

go through the sequence of numbers. The first is 1. This is 1/2 above the

mean. When we flip about the mean it becomes 1/2 below the mean. In

this case it becomes 0. The number −1 is 3/2 below the mean. When we flip

about the mean it becomes 3/2 above the mean, which is 2.

Our top two qubits are currently in the state

1
2

00
1
2

01
1
2

10
1
2

11+ − + .

If we flip the probability amplitudes about the mean we get

0 00 0 01 1 10 0 11 10+ + + = . When we measure this we will get 10

with certainty, so flipping about the mean does exactly what we want. We

just need to make sure that there is a gate or, equivalently, an orthogonal

matrix that performs the flip about the mean. There is. It’s

A =

−
−

−
−



















1
2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

.

When this gate acts on the top two qubits we get

A
1
2

00
1
2

01
1
2

10
1
2

11
1
4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

+ − +



 =

−
−

−
−



















−



















=



















=

1

1

1

1

0

0

1

0

10 .

For this example, where we just have two qubits, we only need to use the

oracle once. We only need to ask one question. So, for n = 2, Grover’s algo-

rithm gives the answer with certainty with just one question, whereas the

classical case takes 2.25 questions on average.

Exactly the same idea works for n qubits. We start by flipping the sign of

the probability amplitude that corresponds to the location we are trying to

find. Then we flip about the mean. However, the amplitude magnification

180  Chapter 9

is not as dramatic in general as in the case for just two qubits. For example,

if we have eight numbers, seven of which are 1 and the other of which is

−1. Their sum is 6, and so their mean is 6/8. When we flip about the mean,

the 1s become 1/2s, and the −1 becomes 10/4. The consequence of this is

that if we have three qubits, after performing the amplitude magnification,

if we were to measure our qubits, we would get the location we are trying to

find with higher probability than the other locations. The concern is that

there is still some significant probability that we will get the wrong answer.

We want a higher probability of getting the right answer—we want to mag-

nify the amplitude even more before we measure. The solution is that we

send everything back through the circuit. We flip the sign of the probability

amplitude associated with the location we are trying to find again and then

perform the flip about the mean again.

Let’s look at the general case. We want to find something that could be

in one of m possible locations. To find it classically we need to ask m − 1

questions in the worst-case scenario. The number of questions grows at the

same rate as the size of m. Grover calculated a formula for the number of

times you should use his circuit to maximize the chance of getting the cor-

rect answer. The number given by this formula grows at the rate m . This

is a quadratic speedup.

Applications of Grover’s Algorithm

There are a number of problems with implementing the algorithm. The

first is that the quadratic speedup is for query complexity. If we need to

use an oracle, then we need to actually construct it, and if we are not

careful the number of steps involved with the computation of the ora-

cle will outweigh the number of steps saved by the algorithm, resulting

in the algorithm being slower rather than faster than the classical one.

Another problem is that in calculating the speedup we are assuming that

there is no underlying order to the data set. If there is structure, we can

often find classical algorithms that exploit the structure and find the solu-

tion more quickly than randomly guessing. The last concern is about the

speedup. Quadratic speedup is nothing like the exponential speedup we

have seen with other algorithms. Can’t we do better? Let’s look at these

concerns.

The concerns involving implementing the oracle and the structure of

data sets are both valid and show that Grover’s algorithm is not going to

Impact of Quantum Computing  181

be practical for most database searches. But in certain cases the structure of

the data can make it possible to construct an oracle that works efficiently.

In these cases, the algorithm can give a speedup over classical algorithms.

The question about whether we can do better than quadratic speedup has

been answered. It has been proved that Grover’s algorithm is optimal.

There is no quantum algorithm that can solve the problem with more

than just quadratic speedup. Quadratic speedup, though not as impressive

as exponential speedup, is useful. With massive data sets, any speedup can

be valuable.

The main applications for Grover’s algorithm are probably not going to

be for the algorithm as has been presented but for variations on it. In par-

ticular, the idea of amplitude amplification is a useful one.

We have only presented a few algorithms, but Shor’s and Grover’s are

considered the most important. Many other algorithms have built upon

the ideas in these two.* We now turn our attention from algorithms to

other applications of quantum computing.

Chemistry and Simulation

In 1929, Paul Dirac wrote about quantum mechanics, saying, “The fun-

damental laws necessary for the mathematical treatment of a large part of

physics and the whole of chemistry are thus completely known, and the

difficulty lies only in the fact that the application of these laws leads to

equations that are too complex to be solved.”

In theory, all of chemistry involves interactions of atoms and configu-

rations of electrons. We know the underlying mathematics—it’s quantum

mechanics, but although we can write down the equations we cannot

solve them exactly. In practice, chemists use approximation techniques

instead of trying to find exact solutions. These approximations ignore fine

details. Computational chemistry has taken this approach and, in general,

it has worked well. Classical computers can give us good answers in many

cases, but there are areas where the current computational techniques

don’t work. The approximation is not good enough. You need the fine

details.

*  The online Quantum Algorithm Zoo, found at https://math.nist.gov/quantum/

zoo/, aims to provide a comprehensive catalog of all quantum algorithms.

https://math.nist.gov/quantum/zoo/
https://math.nist.gov/quantum/zoo/

182  Chapter 9

Feynman thought that one of the main applications of quantum com-

puters would be to simulate quantum systems. Using quantum computers

to study chemistry that belongs to the quantum world is a natural idea

that has great potential. There are a number of areas where it is hoped that

quantum computing will make important contributions. One of these is to

understand how an enzyme, nitrogenase, used to make fertilizers actually

works. The current method of producing fertilizers releases a significant

amount of greenhouse gases and consumes considerable energy. Quantum

computers could play a major role in understanding this and other catalytic

reactions.

There is a group at the University of Chicago that is looking into pho-

tosynthesis. The transfer of sunlight to chemical energy is a process that

happens quickly and very efficiently. It is a quantum mechanical process.

The long-term goal is to understand this process and then use it in photo-

voltaic cells.

Superconductivity and magnetism are quantum mechanical phenom-

ena. Quantum computers may help us understand them better. One goal is

to develop superconductors that don’t need to be cooled to near absolute

zero.

The actual construction of quantum computers is in its infancy, but even

with a few qubits it is possible to begin studying chemistry. IBM recently

simulated the molecule beryllium hydride (BeH2) on a seven-qubit quan-

tum processor. This is a relatively small molecule with just three atoms. The

simulation does not use the approximations that are used in the classical

computational approach. However, since IBM’s processor uses just a few

qubits, it is possible to simulate the quantum processor using a classical

computer. Consequently, everything that can be done on this quantum

processor can be done classically. However, as processors incorporate more

qubits we get to the point where it is no longer possible to simulate them

classically. We will soon be entering a new era when quantum simulations

are beyond the power of any classical computer.

Now that we have seen some of the possible applications, we will briefly

survey some of the ways that are being used to build quantum computers.

Hardware

To actually make practical quantum computers you need to solve a num-

ber of problems, the most serious being decoherence—the problem of your

Impact of Quantum Computing  183

qubit interacting with something from the environment that is not part

of the computation. You need to set a qubit to an initial state and keep it

in that state until you need to use it. You also need to be able to construct

gates and circuits. What makes a good qubit?

Photons have the useful properties of being easy to initialize and easy to

entangle, and they don’t interact very much with the environment, so they

stay coherent for long times. On the other hand, it is difficult to store pho-

tons and have them ready when you need them. The properties of photons

make them ideal for communication, but they are more problematic for

building quantum circuits.

We have often used electron spin as an example. Can this be used? Ear-

lier we mentioned the apparatus used in the loophole-free Bell test. It used

electrons trapped in synthetic diamonds. These are manipulated by shining

lasers on them. The problem has been scaling. You can construct one or

two qubits but, at the moment, it is not possible to generate large numbers.

Instead of using electrons, spins of the nucleus have also been tried, but

scalability is again the problem.

Another method uses the energy levels of ions. Ion-trap computing uses

ions that are held in position by electromagnetic fields. To keep the ions

trapped vibrations must be minimized; cooling everything to near abso-

lute zero does this. The ions’ energy levels encode the qubits and lasers

can manipulate these. David Wineland used ion traps to construct the

first CNOT gate in 1995, for which he received a Nobel Prize, and in 2016

researchers at NIST entangled more than 200 beryllium ions. Ion-traps do

have potential to be used in future quantum computers, but a number of

computers are being constructed using a different approach.

To minimize the interaction of quantum computers with the environ-

ment, they are always protected from light and heat. They are shielded

against electromagnetic radiation, and they are cooled. One thing that can

happen in cold places is that certain materials become superconductors—

they lose all electrical resistance—and superconductors have quantum

properties that can be exploited. These involve things called Cooper pairs

and Josephson junctions.

The electrons in a superconductor pair up, forming what are called Coo-

per pairs. These pairs of electrons act like individual particles. If you sand-

wich thin layers of a superconductor between thin layers of an insulator,

184  Chapter 9

you obtain a Josephson junction.** These junctions are now used in physics

and engineering to create sensitive instruments for measuring magnetic

fields. For our purposes, the important fact is that the energy levels of the

Cooper pairs in a superconducting loop that contains a Josephson junction

are discrete and can be used to encode qubits.

IBM uses superconducting qubits in its quantum computers. In 2016,

IBM introduced a five-qubit processor that they have made available to

everyone for free on the cloud. Anyone can design their own quantum

circuit, as long as it uses five or fewer qubits, and run it on this computer.

IBM’s aim is to introduce quantum computing to a wide audience—circuits

for superdense coding, for Bell’s inequality, and a model of the hydrogen

atom have all been run on this machine. A primitive version of Battle-

ships has also been run, giving the coder the claim of constructing the first

quantum computer multiplayer game. At the end of 2017, IBM connected

a twenty-qubit computer to the cloud. This time it is not for education, but

it is a commercial venture where companies can buy access.

Google is working on its quantum computer. It also uses superconduct-

ing qubits. Google is expected to announce in the near future that it has a

computer that uses 72 qubits. What is special about this number?

Classical computers can simulate quantum computers if the quantum

computer doesn’t have too many qubits, but as the number of qubits

increases we reach the point where that is no longer possible. Google is

expected to announce that it has reached or exceeded this number, giving

them the right to claim quantum supremacy—the first time an algorithm

has been run on a quantum computer that is impossible to run, or simulate,

on a classical computer. IBM, however, is not giving up without a fight. Its

team, using some innovative ideas, has recently found a way to simulate a

56-qubit system classically, increasing the lower bound on the number of

qubits needed for quantum supremacy.

As work continues on building quantum computers, we are likely to see

spinoffs into other areas. Qubits, however we encode them, are sensitive to

interactions with their surroundings. As we understand these interactions

better we will be able to build better shields to protect our qubits, but we

will also be able to design ways our qubits can measure their surroundings.

**  Brian David Josephson received the Nobel Prize in physics for his work on how

Cooper pairs can flow through a Josephson junction by quantum tunneling.

Impact of Quantum Computing  185

An example involves electrons trapped in synthetic diamonds. These are

very sensitive to magnetic fields. NVision Imaging Technologies is a startup

that is using this idea to build NMR machines that they hope will be better,

faster, and cheaper than current ones.

Quantum Annealing

D-Wave has computers for sale. Their latest, the D-Wave 2000Q has, as you

might guess from its name, 2,000 qubits. However, their computers are not

general purpose, they are designed for solving certain optimization prob-

lems using quantum annealing. We will give a brief description of this.

Blacksmiths often need to hammer metal and bend metal. In the pro-

cess, it can become hardened—various stresses and deformities occur in

the crystal structure—making it hard to work. Traditional annealing is a

method of restoring the uniform crystal structure, making the metal mal-

leable once more. It’s done by heating the piece of metal to a high tempera-

ture and then letting it slowly cool.

Simulated annealing is a standard technique, based on annealing, that

can be used for solving certain optimization problems. For example, sup-

pose we have the graph given in figure 9.3 and want to find the lowest

point—the absolute minimum. Think of the graph as being the bottom of

a two-dimensional bucket. We drop a ball bearing into the bucket. It will

settle at the bottom of one of the valleys. These are labeled A, B, and C in

the figure. We want to find C. The ball bearing may not land at the bottom

A

B

C

Figure 9.3
Graph of function—bottom of bucket.

186  Chapter 9

of C, but instead it might end up at the bottom of valley at A. The impor-

tant observation in annealing is that the energy required to push the ball

bearing up the hill and let it drop into valley B is much less than the energy

needed to push the ball bearing up from B and let it drop into A. So, we

shake the bucket with an energy level between these two values. The ball

can move from A to B, but it cannot move back. After a while of shaking at

this level, it will end up either at the bottom of A or B. But shaking at this

level can send the ball from C to B. The next step is to shake it again, but

less energetically, with enough energy to get it up the peak from B to C, but

not enough to let it get back from C to B.

In practice, you start shaking and gradually reduce the energy. This cor-

responds to gradually cooling your piece of metal in traditional annealing.

The result is that the ball bearing ends up at the lowest point. You have

found the absolute minimum of the function.

Quantum annealing adds quantum tunneling. This is a quantum effect

where the ball bearing can just appear on the other side of a hill. Instead of

going over, it can go through. Instead of reducing the heights of hills the

ball can climb, you reduce the length of the tunnels it can tunnel through.

D-Wave has produced a number of commercially available computers

that use quantum annealing for optimization problems. Initially, they

were met with some skepticism about whether the computers actually used

quantum tunneling, but now it is generally agreed that they do. There is

still some question of whether the computers are faster than classical ones,

but people are buying. Volkswagen, Google, and Lockheed Martin, among

others, have all bought D-Wave machines.

After this brief look at hardware, we turn to deeper questions. What does

quantum computation tell us about us, the universe, and what computa-

tion is at its most fundamental level?

Quantum Supremacy and Parallel Universes

There are 8 possible three-bit combinations: 000, 001, 010, 011, 100, 101,

110, 111. The number 8 comes from 23. There are two choices for the first

bit, two for the second and two for the third, and we multiply these three

2s together. If instead of bits we switch to qubits, each of these 8 three-bit

strings is associated with a basis vector, so the vector space is 8-dimensional.

Exactly the same analysis tells us that if we have n qubits, then we will have

Impact of Quantum Computing  187

2n basis vectors, and the space will be 2n-dimensional. As the number of

qubits grows, the number of basis vectors grows exponentially, and things

quickly get big.

If we have 72 qubits, the number of basis elements is 272. This is about

4,000,000,000,000,000,000,000. It is a large number and is considered to be

around the point at which classical computers cannot simulate quantum

computers. Once quantum computers have more than 72 or so qubits we

will enter the age of quantum supremacy—when quantum computers can

do computations that are beyond the ability of any classical computer. As

we mentioned earlier, it is expected that Google is about to announce that

this age has been reached. (D-Wave has 2,000 qubits in its latest computer.

However, this specialized machine has not been able to do anything that

cannot be done by a conventional computer, so it hasn’t broken the quan-

tum supremacy barrier.)

Let’s consider a machine with 300 qubits. This doesn’t seem an unrea-

sonable number for the not too distant future. But 2300 is an enormous

number. It’s more than the number of elementary particles in the known

universe! A computation using 300 qubits would be working with 2300 basis

elements. David Deutsch asks where computations like this, which involve

more basis elements than there are particles in the universe, are done. He

believes that we need to introduce parallel universes, each collaborating

with one another.

This view of quantum mechanics and parallel universes goes back to

Hugh Everett. Everett’s idea is that, whenever we make a measurement, the

universe splits into several copies, each containing a different outcome.

Though this is distinctly a minority view, Deutsch is a firm believer. His

paper in 1985 is one of the foundational papers in quantum computing,

and one of Deutsch’s goals with this work was to make a case for parallel

universes. He hopes that one day that there will be a test, analogous to Bell’s

test, that will confirm this interpretation.

Computation

Alan Turing is one of the fathers of the theory of computation. In his land-

mark paper of 1936 he carefully thought about computation. He consid-

ered what humans did as they performed computations and broke it down

188  Chapter 9

to its most elemental level. He showed that a simple theoretical machine,

which we now call a Turing machine, could carry out any algorithm. Tur-

ing’s theoretical machines evolved into our modern day computers. They

are universal computers. Turing’s analysis showed us the most elemental

operations. These involve the manipulation of bits. But remember, Turing

was analyzing computation based on what humans do.

Fredkin, Feynman, and Deutsch argue that the universe does

computations—that computations are part of physics. With quantum com-

putation the focus changes from how humans compute to how the uni-

verse computes. Deutsch’s 1985 paper should also be seen as a landmark

paper in the theory of computation. In it, he showed that the fundamental

object is not the bit, but the qubit.

We have seen that we will soon reach the point of quantum supremacy;

that we will have quantum computers that no classical computers will be

able to simulate, but what about the converse? Can quantum computers

simulate classical computers? The answer is that they can. Any classical

computation can be done on a quantum computer. Consequently, quan-

tum computation is more general than classical computation. Quantum

computations are not a strange way of doing a few special calculations;

rather, they are a new way of thinking about computation as a concept. We

shouldn’t think of quantum and classical computation as two distinct sub-

jects. Computation is really quantum computation. Classical computations

are just special cases of quantum ones.

In this light, classical computation seems an anthropocentric version

of what computation really is. Just as Copernicus showed that the Earth

wasn’t the center of the universe and Darwin showed that humans evolved

from other animals, we are now beginning to see that computations are

not centered on humans. Quantum computing represents a true paradigm

shift.

I am not suggesting that classical computing is going to become obso-

lete, but it will become accepted that there is a more fundamental level of

computing, and the most elemental level of computing involves qubits,

entanglement, and superpositions. At the moment, the focus is on showing

that certain quantum algorithms are faster than classical ones, but this will

change. Quantum physics has been around longer than quantum computa-

tion. It’s now accepted as its own subject. Physicists don’t try to compare

quantum physics with classical physics and hope to show that it is in some

Impact of Quantum Computing  189

way better. They study quantum physics in its own right. The same shift

will happen with quantum computation. We have been given new tools

that change the way we study computation. We will use them to experi-

ment and see what new things we can construct. This has started with tele-

portation and superdense coding, and it will continue.

We are entering a new era, with a new way of thinking about what

computation really is. What we are going to discover is impossible to say,

but now is the time for exploration and innovation. The greatest years for

quantum computation are ahead of us.

Index
I n d e x
I n d e x

© Massachusetts Institute of TechnologyAll Rights Reserved

Adder, 102

Adleman, Leonard, 172

Algorithms

Deutsch, 145–149

Deutsch-Jozsa, 152–157

Grover, 176–181

Shor, 174–176

Simon, 157–168

Amplitude amplification, 179

Ancilla bit, 108

BB84 protocol, 53–55

Bell, John Stewart, 72, 76, 84

Bell basis, 128

Bell circuit, 127

Bell’s inequality, 79–84

Bell test, loophole-free, 66, 183

Bennett, Charles, 54

Billiard ball computer, 90, 111–115

Bit

ancilla, 108

classical, 1

garbage, 109

quantum, 1, 50

Bitwise addition, 157

Black box, 145

Bohm, David, 76

Bohmian mechanics, 85

Bohr, Niels, 1, 71, 76, 82, 84

Boole, George, 89, 90

Boolean algebra, 91–93

Boolean function, 94

Bounded quantum polynomial. See

Complexity classes, BQP

Bra, 19

Bra-ket

length of vectors, 24

notation, 23

orthogonality of vectors, 24–25

Brassard, Gilles, 54

Chemistry. See Computational

chemistry

Circuit, 99

Classical bit, 1

Classical mechanics, 9–11

Clauser, John, 82

Clay Mathematics Institute, 144

Cloning, 124

Complexity classes

BPP, 167

BQP, 167

EQP, 166

NP, 142–144

P, 142–144

QP, 166

Complex numbers, 17–18, 35,

38

Computational chemistry, 181–182

Cooper pair, 183

Copenhagen interpretation, 71

Cryptanalysis, 172

192  Index

Darwin, Charles, 188

Database search, 181

Decoherence, 182

Deutsch, David, 85, 145, 169, 187

Dimension, 19, 38

Dirac, Paul, 17, 19, 181

D-Wave, 185–186

Einstein, Albert, 69, 71, 75–77, 82

Ekert, Artur, 86

Ekert protocol, 86–87

Encryption, RSA, 172–173

Entanglement, 59

Entropy, 105

EPR paradox, 76–77

Equivalent state vectors, 41–42

Error correction, 135–140

Everett, Hugh, 187

Exact quantum polynomial. See

Complexity classes, EQP

Exponential time, 143

Fan-out, 100

Feynman, Richard, 89, 115, 182

Flip about the mean, 179

Flip-flop, 103

Fredkin, Edward, 89, 111, 115

Freedman, Stuart, 82

Function

balanced, 146

constant, 146

Functional completeness, 94–96

Garbage bit, 109

Gate

AND, 98

controlled not (CNOT), 67, 105

Fredkin, 109

Hadamard, 122

NAND, 99

NOT, 98

OR, 99

Pauli, 121

quantum, 117, 120

reversible, 102

switch, 111

Toffoli, 107

universal, 101, 108, 110, 123

XOR, 102

Gerlach, Walther, 1

Google, 184

Gravity, 75–76

Grover, Lov, 176

Half-adder, 102–103

Hidden variables, 11, 71, 77–78

IBM, 182, 184

ID Quantique, 176

Interference, 52–53, 174

Ion-trap, 183

Josephson junction, 183

Ket, 19

Kronecker product, 149–152

Landauer limit, 105

Linear algebra toolbox, 35

Linearly independent, 165

Linear superposition, 50

Local realism, 71, 75–76

Logical equivalence, 93

Many-worlds view, 85

Matrix, 30

Hadamard, 159–160

identity, 32

Kronecker product, 149–152

main diagonal, 32

multiplication, 31, 32

not commutative, 32

orthogonal, 34

square, 32

transpose, 31

unitary, 34

Index  193

Micius, 176

Millennium Prize, 144

NMR machine, 185

No cloning theorem, 124–126, 134, 138

Non-commutative operation, 32, 58

NVision Imaging Technologies, 185

Oracle, 145

Ordered basis, 29

Orthonormal basis, 25

Parallelogram law, 22

Parallel universes, 187

Parity check, 137–139

Pauli, Wolfgang, 121

Pauli transformations, 121

Peirce, Charles Sanders, 97

Petzold, Charles, 101

Photosynthesis, 182

Podolsky, Boris, 76

Polarization, 11–15

Polarized filters, 12–15

Polynomial time, 142–144

Post-quantum cryptography, 175

Probability, 37–38

Probability amplitude, 29, 39, 52

Pseudorandom numbers, 15

P versus NP, 144

Pythagorean theorem, 20

Quadratic speedup, 180

Quantized spin, 15

Quantum annealing, 185–186

Quantum bit, 1, 49–50

Quantum bit-flip correction, 137–140

Quantum clock, 6, 14, 68–69, 78

Quantum Fourier transform, 174

Quantum key distribution (QKD), 53,

86, 175–176

Quantum parallelism, 141, 168–169

Quantum speedup, 141

Quantum supremacy, 184, 186–188

Quantum teleportation, 132–135,

176

Quantum tunneling, 186

Qubit. See Quantum bit

Query complexity, 145

Randomness, 10–11

Relative phase, 122

Repetition code, 136–137

Reversible gate, 102–108

Rivest, Ronald, 172

Roots of unity, 174

Rosen, Nathan, 76

RSA encryption, 172–174

RSA Laboratories, 143

Scalar multiplication, 21

Schrödinger, Irwin, 71, 85, 176

Schrödinger equation, 85

Sensitive dependence on initial

conditions, 11, 77

Shamir, Adi, 172

Shannon, Claude, 89, 98, 105

Sheffer, Henry, 97

Sheffer stroke, 97

Shor, Peter, 144, 170, 172

Simon, Daniel, 169

Spin, 3

Spin state, 39

Spontaneous parametric

down-conversion, 65

Spooky action at a distance, 69, 76–77

Standard basis, 26, 35

State, 39

Stern, Otto, 1

Stern-Gerlach apparatus, 2

Superdense coding, 129–132

Superluminal communication, 62–64

Teleportation. See Quantum

teleportation

Tensor product, 57–58

Theory of relativity, 62, 76

194  Index

Toffoli, Tommaso, 107

Truth tables

and, 90–91

exclusive or, 91

inclusive or, 91

Nand, 96

negation (not), 90

Turing, Alan, 171, 187–188

Turing machine, 188

Universal gate (classical), 101, 108, 110,

123

Universal quantum gate, 123–124

Vector, 19

addition, 21–22

dot product, 24

length, 20, 30

linear combination, 28

orthogonal, 23

space, 38

state, 39

tensor product, 57–58

unit, 20

Wineland, David, 183

	Contents
	Acknowledgments
	Introduction
	1 Spin
	The Quantum Clock
	Measurements in the Same Direction
	Measurements in Different Directions
	Measurements
	Randomness
	Photons and Polarization
	Conclusions

	2 Linear Algebra
	Complex Numbers versus Real Numbers
	Vectors
	Diagrams of Vectors
	Lengths of Vectors
	Scalar Multiplication
	Vector Addition
	Orthogonal Vectors
	Multiplying a Bra by a Ket
	Bra-kets and Lengths
	Bra-kets and Orthogonality
	Orthonormal Bases
	Vectors as Linear Combinations of Basis Vectors
	Ordered Bases
	Length of Vectors
	Matrices
	Matrix Computations
	Orthogonal and Unitary Matrices
	Linear Algebra Toolbox

	3 Spin and Qubits
	Probability
	Mathematics of Quantum Spin
	Equivalent State Vectors
	The Basis Associated with a Given Spin Direction
	Rotating the Apparatus through 60°
	The Mathematical Model for Photon Polarization
	The Basis Associated with a Given Polarization Direction
	The Polarized Filters Experiments
	Qubits
	Alice, Bob, and Eve
	Probability Amplitudes and Interference
	Alice, Bob, Eve, and the BB84 Protocol

	4 Entanglement
	Alice and Bob’s Qubits Are Not Entangled
	Unentangled Qubits Calculation
	Entangled Qubits Calculation
	Superluminal Communication
	The Standard Basis for Tensor Products
	How Do You Entangle Qubits?
	Using the CNOT Gate to Entangle Qubits
	Entangled Quantum Clocks

	5 Bell’s Inequality
	Entangled Qubits in Different Bases
	Proof That...
	Einstein and Local Realism
	Einstein and Hidden Variables
	A Classical Explanation of Entanglement
	Bell’s Inequality
	The Answer of Quantum Mechanics
	The Classical Answer
	Measurement
	The Ekert Protocol for Quantum Key Distribution

	6 Classical Logic, Gates, and Circuits
	Logic
	Boolean Algebra
	Functional Completeness
	Gates
	Circuits
	NAND Is a Universal Gate
	Gates and Computation
	Memory
	Reversible Computation
	Billiard Ball Computing

	7 Quantum Gates and Circuits
	Qubits
	The CNOT Gate
	Quantum Gates
	Quantum Gates Acting on One Qubit
	Are There Universal Quantum Gates?
	No Cloning Theorem
	Quantum Computation versus Classical Computation
	The Bell Circuit
	Superdense Coding
	Quantum Teleportation
	Error Correction

	8 Quantum Algorithms
	The Complexity Classes P and NP
	Are Quantum Algorithms Faster Than Classical Ones?
	Query Complexity
	Deutsch’s Algorithm
	The Kronecker Product of Hadamard Matrices
	The Deutsch-Jozsa Algorithm
	Simon’s Algorithm
	Complexity Classes
	Quantum Algorithms

	9 Impact of Quantum Computing
	Shor’s Algorithm and Cryptanalysis
	Grover’s Algorithm and Searching Data
	Chemistry and Simulation
	Hardware
	Quantum Supremacy and Parallel Universes
	Computation

	Index

